-

NAVAL POSTGRADUATE SCHOOL @
Monterey, California

AD-A274 916
LT

s ELECTEC
JAN 2 6 1994
A

An Automated
Ada Physical Source
Line Counter

by
Kevin J. Walsh

September 1993

Thesis Advisor: Timothy J. Shimeall -

Approved for public release; distribution is unlimited.

94-02269
94 1 25 088 AR

Best -
Available

Copy

Form Approved
REPORT DOCUMENTATION PAGE OMB No.0704.0188

Public reporting burden for this callection of ink ion is esti d to average 1 hour per resp ding the time reviewing i ’ hing exsting data
gathering and mainiaining the data nseded, wmmmnmd ion. Send rWWWﬂmMummmdm
collection of intormation, including suggestions for reducing this burden to Washington Headq Servioss, Di for Indormation Operations and Reports, 1215 Jeflerson
Devis Highway, Suite 1204, Adington, VA 22202-4302, and 1o the Office of Management and Budget, Pwmhw(omm) Washington, DC 20503

1. le!uc? UgE mﬂ {Leave Blank) . REPORT DAT 3 1

‘ September 1993 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Automated Ada Physical Source Line Counter (U)

|y

Walsh, Kevin John
m
7. PERFORMING ORGANIZATION NAME&S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate Schoo REPORT NUMBER
Monterey, CA 93943-5000
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

(97, SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

s v ———————
12a. DISTRIBUTI_ON / AVAILA?IU:TY STATEMENT 12b. DISTRIBUTION CODE
Unclassified/Unlimited

} 13- ABSTRACT (Maximum 200 words)
Tools to count lines of code have not been standardized or automated in a flexible fashion. This lack of

flexibility can lead to ambiguous interpretations of the size of software modules, especially when the
person performing the measurement does not use the method or rules expected by the person requesting
the measurement. The Software Engineering Institute (SEI) Framework for Size Measurement provides a
basis for flexible design of software measurements. The SEI framework describes measurements using
nine attributes. This Framework is part of recently proposed DoD guidelines for software process
measurement. The problem that this thesis addresses is how to implement the SEI Framework for Size
Measurement to flexibility count lines of the code in Ada software. The approach is to build an automated
Ada Physical Source Line Counter that measures Ada source files and generates the appropriate reports.
The tool works as follows: the user defines the measurement constraints to the tool, which calls an Ada
parser to generate counts to be included in user-specified reports. The result is a program that takes user
requests and Ada source files and produces measurement reports as output. This program fully captures
the flexibility of the SEI framework along five of the nine measurement attributes.

14. SUBJECT TERMS . . 15. NUMBER OF PAGES
Software Metrics, Source Lines of Code, Ada 286
[T6. ERICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPQRT OF THIS !’AGE OF ABSTRACT
Unclassified Unclassified Unclassifie UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

An Automated Ada
Physical Source
Line Counter

by
Kevin J. Walsh
Major, United States Army
B.S.C.S., Youngstown State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: ﬁ Q5o /}\(«) ‘Q’Q\

Kevin J ohn‘Walsh

Approved By: jM“‘W / /XA‘/“““‘&

Dr. Timot};y y Shimeall, Thesis Advisor

;IAL: David A. Gaitros, Second Reader

Dr. Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Tools to count lines of code have not been standardized or automated in a flexible
fashion. This lack of flexibility can lead to ambiguous interpretations of the size of software
modules, especially when the person performing the measurement does not use the method
or rules expected by the person requesting the measurement. The Software Engineering
Institute (SEI) Framework for Size Measurement provides a basis for flexible design of
software measurements. The SEI framework describes measurements using nine attributes.
This Framework is part of recently proposed DoD guidelines for software process
measurement.

The problem that this thesis addresses is how to implement the SEI Framework for
Size Measurement to flexibility count lines of the code in Ada software.

The approach is to build an automated Ada Physical Source Line Counter that
measures Ada source files and generates the appropriate reports. The tool works as follows:
the user defines the measurement constraints to the tool, which calls an Ada parser to
generate counts to be included in user-specified reports.

The result is a program that takes user requests and Ada source files and produces
measurement reports as output. This program fully captures the flexibility of the SEI

framework along five of the nine measurement attributes.

Accesion For \

. o LLITY [NSPECTED B NTIS CReal Y
DTIC QUALITY 1K DIIC TAR 5
Unannounied
Justificaticr,

By

i

TABLE OF CONTENTS

L INTRODUCTION. .. ittt ittt teatieretnaeeananaanennnns 1
A. BACKGROUND.iiiiiiiiiiit ittt eetninateeeannneeeanannons 1
| DR 7 2

2. Personnel/Effort.iviiiniiiiii ittt ittt 2

3 ComputerUSe ...ttt ittt ittt 2

4. Schedule Progresscviiiiiiiiiiiiiin it iiiiriniiiateannnn 3

5. Requirement and Design Progress.ot .. 3

6. Testing Progress/Qualityttt 3

7. IncrementalReleaseContent..........ccviiiiiiiiiiinininnnnnnn., 3

8 CompleXity.ovvviniiitiii ittt ittt e 4

B. USERSOFSOFTWAREMETRICScciiiiiiiiiiiiiienannnns 4
C. WHYCOUNTERS AT ALL?Z. iiiiiiiiiiiiiieeeeeaneeeneennnnnn. 6
1. Automated versus Manual Counterscoviviiinniienennnn., 6

2. Counting versus Reporting versus Trackingccounn... 6

D. PROBLEMDESCRIPTION ittt iiiiiiiiiieneeenannnnnnn, 8
E. OVERVIEWOFTHESISttt iinenannnns 8
IO. SEIFRAMEWORK iiiiiiiiiiiiiiiiiitiniineteeenennnnnannns 9
A. DEFINITIONOFFRAMEWORKcciiiiiiiiiiiiiiiiinennennnn 9
L AT UtES . . .ot e i e i e 10

2. Values L. e i i e 10

K T 2 143 o 11

B. APPLICATIONSOFFRAMEWORKttt 11
1. Software Size Measurement:............ciiiiiiiinreeninnnnnnnnnn. 11

2. Software Effort and Schedule Measurement: 12

3. Software Quality Measurement:coovtinnrnnnnnnnnn, 12

C. AUTOMATIONOF SIZEMEASURE.ccitiiiieeinnnnnnnennn. 12

iv

1. DOS Version of the SEI FrameworkonSize 13

2. PC-MetricforPascalcooiiiiiiiiiiiiiiii 13

B SUMMARY . .. i ittt ittt eiaaseeee e eiannans 14
L TOOLDESIGN. .. ittt it ettt iinieaee s 15
A. ATTRIBUTES SUPPORTED.coiiiiiiiiiiiiiniiieneennannnnnnns 15
1. Statement Typeottt i i i it it i 15

2. HowProduced. ...t ittt 16

KT 111 U 16

T 01 LA 16

B T B T 1 o AR 17

6. Development Status.ciiitiiiiinetienennnneennarencaneennns 17

7. Clarifications (General and Ada Specific).................ccn.... 17

B. ATTRIBUTESNOTSUPPORTEDocoiviiiiniriiniennnanennnnns 18
1. Functionality00 iuiiiiirnnieiiniieiirineranrneenenns 18

2. Replications.covviiiiniiiiiireeerennreneocneanonasnneanns 18

C. DEFAULT REPORTS/OUTPUTiiiiiiiiiiiiiineeniieeeeeannnns 18
O LT+ 4 N 19

R 14 1 - 7 19

K I 2 ¢ 19

4 ReportD. .. it it e e 20

S, RePOTtE. .. i i i e e e it 20

D. USER-DEFINED REPORTS/OUTPUTcccciviiiiiiinnnnnnnnn.. 21
E. DATASTRUCTURESi.itiiiiiittttiniitrernanneneerennnns 22
1. Variables used foreveryreportc.cvviiirreieninnniinnn. 22

2. Size Attributes e et e e 23

3. Five Dimensional Ammays.ovuvivniiiinnnnneneeeeeeeeeeennnnnns 24

4. PHOTIY ATTaYS . .t tttittteree e iriiateeaeeeeeeennennns 24

S. Flags AITayciviiiniiieiinnniiseeenaneneenanaeraenannnnss 25
6. CurrentSettingsRecord.ttt 25
7. Checklist Variablescoviiiiiiiiiiiiineiieennnnennnneans 25
F. OVERVIEW i iiiiiiiiiiiiietteniinnaesanasassananenaans 26
G. USERINTERFACEcoittiiiiiiiiiiiiaiiinieneeeeeennanns 27
H. PARSER iiiiiiiiiitiiiiiiiiettiiiinneeannnnesennnnnnenns 32
I. REPORTGENERATOR.cciiiiiiiiiiiinettniiiineeonnnnnenns 34
Y. SUMMARY . .ttt iiiiiiiiestattereatieeeeriaaaeaas 34
IV.TOOLUSAGEctiiiiiiiiiiitiettiienieernnaasensonnannaasnnns 36
A . INTRODUCTION.ttt ittt iiiiii e iiiineeennnnnanens 36
B. REQUIREMENTS. it e i ittt ieniaeneaas 36
L Hardwarecoiiiiiiiiiiiiiiiieiiieiiiiieetierenneranneenns 36
2. SO tWArE. ... i ittt i it e i et it it 36
K TR 1171 P 36
4, Legal AdaSyntax........cooiiiiiiniieininneinenneiireirennenns 36
C. LIMITATIONS ... ittt ittt reaanaaenanns 37
1. Package ConfliCtsccoviviireninnenrnsnnenceetnnenansnnsns 37
2. Coding Styleccvvniinnirtiiiiii i it it 37
D. COMMANDLINEINVOCATIONctoiiiiiiiiiiiiiieinnecennnns 38
E. EXTENDEDEXAMPLEciiiiiiiiiiiiiiiiiinniiiinnnnnnn. 38
1. Sample Applicationccoviiiiiiiiiiiiiieniiiiiinieanennan, 38
2. UserInterface...........ooiiiiiiiiiiiiiiiiiiii it 39
3. Statement Processing.........cciiiiiiiiiiiiiiiieiiiiiieiiiiiiee, 42
a. ExecutableStatements.............coiiiiiiiiiiiiiiiiiiie 42
b. Declaration Statementsccoiviireriiiieieiiniiineienns 44
CommentsonOwnlLineooooiiiiiiiiiiiiiiiiie, 45
d. Banner Commentsooovirrnnieennetrnnerennsecnsecensnns 46
€. BlankLinesoiiiiiiiiiiiiiiiiiiii e 46

vi

SR .16 1 < g 47

F. SUMMARY ... ittt tieitiieteetnnnanteranennns 53

V. SUMMARY ANDCONCLUSIONScotiiiiiiii ittt SS

A. RESEARCHSUMMARYciiiiiiiiitiiiiiiieiiineneennnnns 55

B. RECOMMENDATIONS. it ittt ittt ittt ian e 56

APPENDIX AUSERMANUAL ittt ittt it 58

A. REQUIREMENT S. i iiiiiiiintiiriiitteteiineceeeennnnes 58

I, Hardwareoiiiii ittt it ittt i i et 58

R T 47V e 58

K TR V1) 11 U PO 58

4. Legal Ada Syntax.ooiiiiiiiniinitnnetinniocnnanennnnnns 60

B. LIMITATIONS ... ittt ittt ittt itaeeeraneesneennneanns 61

1. Package Conflictscoviiiiiininiiiiinnineiennenenennrnnnnns 61

2. Coding Styleiiniiiii i i i i i et 61

C. COMMANDLINEINVOCATION ... c.iiiiiiiiiiiiiiiiiieneinnnnns 62

D.USERINTERFACEcciiiiiiiiiiiiiiiiiiiiinienneinnnannns 62

Lo Push-buttons.oovniii ittt ittt ittt 63

2. ChecKbOXS .. ovvii ittt iiiit ittt ittt it i i 64

3. Radio-buttons.oiiriini ittt it it 64

4. Labels and Text/Integer Keyinitems.cooiiiinan... 64

E. INTRODUCTORY PANELc0tniiiiiiiiiiiiieiiiiinnnennenenns 65

F. INPUTPANEL ... i i i ittt enns 65

G. ATTRIBUTEPANELS.ottt iiiiiiiieneenenas 66

H. CLARIFICATIONS (GENERAL and Ada) PANELS 72

I. GENERATEREPORTPANELcciiiiiiiiiiiinnn... e 72

Jo QUITPANELiiiiiiiiiiiiiiiiiiieiiiinnenseirnsnnnanns 72

APPENDIX B. SOURCECODE.ccoiiiiiiiiiii ittty 77

APPENDIX C. EXTEND SAMPLE INPUT AND OUTPUT.................... 244
vii

LIST OF REFERENCES.

INITIAL DISTRIBUTION LIST

..

..

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 13
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9

LIST OF FIGURES

SEI Auributes supported and not supported 15
Written DescriptionforReport A 19
Wiritten description forreport B 20
Written description forreport C i, 20
Written description forreport D ool 21
Wiritten description forreport E L, 21
Relationship of input file name and Ada source files to be measured 23
Attribute Statement Type values declared as an enumerated type 23
Declaration of five dimensionalarraycooonn. 24
Declaration of Priority type array to track precedence levels 24
Declaration of FLAGS_TYPE ARRAYoiiivnn.... 25
Example of FLAGS_TYPE_ARRAY valuessettotrue 25
Overview of the Automated Ada Physical Source Line Counter 26
Overview of Userinterfaceiiiiiiiiininennann., 31
Example of Ada code executed insideof Ayacc 32
Example of rule to find blank lineso iiiiaL, 32
Example of rulesaddedto Aflex oL, 33
Example of code to recognize Specialcomments 34
Example of Ada.y inputfileto Ayacco, 37
Example of two different codingstyles, 38
Contents of EXAMPLE _FILEcciiiiiininnnnnnnnnn. 39
Exampleof textkeyinfields i ... 40
Example of marked checkboxs for selectingreports A-F 40
Example of customizingreport F, 41
Variables used during parsing of sourcefiles 42
Sampleinputcode it i i i e 44
Partial output of REpOrt Attt ittt iiiiiiieennenn 43
Partial outputof Report B 49
Partial outputof Report Cttt 50
Partial outputof ReportD it 51
Partial outputof ReportEottt 52
Partial outputof Report F i i 54

Special Commentsc.coiiiiiiiiiiieiiiiieiiiiaaa.n 59

Example of Ada.y inputfileto Ayaccccovvuverunn... 61

Example of two different codingstyles 62

Example of Push-buttons o i it 63

Available ReportNamescciiiiiiiiiiinnnnnn., 64

TextKeyinfieldsandlabels.................coiiiiina.... 65

Statement TypePanelottt 67

HowProducedPanel, 68

OriginPanelottt ittt 69

ix

Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15

Usage and Delivery OptionsPanel 70
Development StatusPanel, 71
Clarifications (general) Panel 73
Clarifications (Ada)Panelccouviininvnn.. 74
Generate ReportPanel 75
QuitPaneli i e, 76

ACKNOWLEDGEMENTS

This project is not the work of one individual alone. There is a large number of people
who contributed to this work both directly and indirectly. Although it would be impossible
to acknowledge all of them, I would like to take this opportunity to thank the major player,
Dr. Timothy J. Shimeall, who provided endless support and encouragement during this
work. His guidance was invaluable. Additionally, I would like to thank MAJ Gaitros for his
contribution in making this thesis more understandable. Thanks are also due to Mr. Bob
Park and others at SEI for their previous work providing the basis for this thesis.

Bob Ordonio helped me see the light in numerous programming dark holes.

Finally, I would like to thank my wife, Susan, my son Sean and my daughter Sara, for
their loving support and understanding during the many nights spent at the terminals in the
Computer Science Lab.

Without the help and moral support of the above people and countless others, this work

would not have been possible.

xi

I. INTRODUCTION

A. BACKGROUND
From 1980 to 1985, software-related costs rose from 3 percent ($40 billion) of the U.S.

gross national product to 5 percent ($228 billion). Software effects are increasing, due in
part to: the decreasing cost of hardware, which has been cut in half every two years; the
increasing speed and capacity of computers to new applications as computers do tasks that
are either too complicated or too time-consuming to do manually. However, the systems
that rely on software will only use software that is reliable, easy to use, and accomplishes
the needs of the people using the systems. The software developer is tasked to ensure that
software is delivered on time, under budget and meeting or exceeding the performance
requirements. [BER 90]

Software is not just the code, but the entire set of documentation, operating
procedures, test cases, and programs associated with a computer-based system. The goal of
software engineering is to provide effective methods for producing software systems that
meet the needs of the customer, while conforming to the customer’s schedule and budget
constraints. [BER 90]

Part of this process is to provide accurately-generated attributes to estimate cost and
effort, then track the ensuing process against the estimate. The field of computer science
does not currently quantify accurately its attributes. [BEI 90]

Beizer categorizes computer metrics into three groups, which are: Linguistic,
Structural, and Hybrid. Linguistic metrics are measurements without regard to
interpretation. For example, most counts of things are linguistic. The measurement of the
number of unique operands or number of unique operators is linguistic. The order of either
operands or operators is of little concern. The total number of operators or operands is the
target, not where in the code or how they interact with each other or other parts of the code.
[BEI 90]

T

Structural metrics are based upon the structural relations between objects within the
program. Structural metrics measure the properties of the control flowgraphs of data
flowgraphs. An example would be to count the number of links, number of nodes, and
nesting depths. To accomplish this type of metric, the program would need to be
interpreted. Hybrid metrics are some combination of linguistic and structural. [BEI 90}

There are many different measurements currently in use. Some measure the size of a
project from the number of lines it contains, others base the size on the number of operators.
There are measures for productivity, schedule, effort, quality, requirements designed,
detailed designs, and use of availability of computer resources. Some commonly used
metrics include, but are not limited to Size, Personnel, Computer use, Unit Progress,
Schedule Progress, Design Complexity, Requirement and design Progress, Testing
Progress, and Incremental release content. The next sections will briefly discuss some

metrics available and the benefits of using them.

1. Size

The size measurement may reflect either the planned size or current or estimated

size. One possible unit of measure is lines of code to be developed, modified, planned, and
reused. This metric can help plan the total effort and schedule and measure productivity.
For an example, an increase in the size of the software code, shows the project will require

more resources of time, money and personnel.

2. Personnel/Effort

The personnel/effort measurement includes the estimated and current number of
personnel working on the project. One possible unit of measure is time card hours. This

metric measures productivity, and how staffing is effecting the planned schedule and cost.

3. Computer Use

The computer use measurement includes the estimated and actual percentage of

the target system’s hardware CPU, storage, and communication capacity. A possible unit

of measure is the CPU speed. This metric shows if the planned target system is capable of

the current requirements and if any spare capacity exists for increases later.

4. Schedule Progress
Schedule progress measurement includes the estimated progress, measured as the
ratio of the planned to the actual work done on the schedule. This metric can measure
productivity and progress. For example, this measurement can show if the software
development is meeting the scheduled requirements as laid out in the contract. This metric

uses the standard cost-reporting data on software work packages completed under MIL-
STD 2167A.

5. Requirement and Design Progress

The met.. for requirement and design progress can track requirement
documentation process. The measurement would detail the number of requirements,
number of requirements documented, and the number of requirements scheduled to be
documented. This metric is used in the specification and detailed design phases. This metric

is another measure of progress and productivity.

6. Testing Progress/Quality
The measurement of progress and quality includes the planned and actual
configuration items and completed system tests; number of new problem reports and
opened or unresolved problem reports. These metrics can measure the progress in
completing testing, the number of potential bugs found, and the speed of fixing them. These
metrics can also estimate software quality, and the time needed to complete the tests.

7. Incremental Release Content
This metric, compares the estimated and actual release date with the estimated
and actual components in each release. The metric measures the progress of a software
project in relation of the estimated module releases, with the actual module releases. For

example, if the number of actual modules increases for a planned release, is this as a result

of changing requirements or coding is ahead of schedule? Conversely, if the number of
actual modules decreases for a planned release, is this a result of pressure to meet the

published schedule dates, and coding is behind schedule?

8. Complexity
The most common design complexity metric is Cyclomatic complexity [NAS 90].
This metric indicates which parts of the software system that may be error prone or hard to
maintain. For example, a software developer may use cyclomatic complexity on a piece of
software such that, once a software module exceeds a level the module is reworked to bring
the complexity level down if there is sufficient time and budget for the rework. Cyclomatic
complexity may also provide a relative indication of where testing will be difficult, which

aids in planning test efforts.

B. USERS OF SOFTWARE METRICS

Program managers and software developers are the main users of software metrics.
Users can benefit from the use of software measurement throughout a software project.

Program managers use software metrics to help them estimate project costs, schedules
and performance. A good estimate is the cornerstone of a successful project. To have a
successful program, the manager needs to know how much money to spend, (cost), how
much time to finish the program (schedule), and what the final specifications are
(performance). When dealing with software projects, the manager needs to know how long
it is going to take to develop the final product and at what cost. To do this effectively, a
good, accurate, estimate early in the program’s life cycle is needed. The estimate of the
project size will affect the cost, schedule, and performance qualities of the project. For
instance, if the project is estimated to have the functionality of A, B, and C; the project must
be completed in one year; the project is estimated to have 100K lines of code; with five
programmers; and no more than $500K. Management needs to ensure that resources are
employed to complete the project on time or to make a decision to trade-off one resource

for another. Management will also need to know during the life of the project the status of

thc constraints placed on this project - is it falling behind or ahead of schedule, exceeding
or within its budget.

Software metrics can help decide where the software project is in relation to the project
completion and alert project managers, maintainers, testers of future problems, delays, and
increased costs. During a large multi-year software development, there are usually only a
few major milestones that must be met by the software developer. The major milestones do
not allow for adequate management visibility of the entire process for a day to day or week
to week development tracking. A lot happens between these milestones, and a more
detailed picture is needed on a more frequent basis. In order for management to track the
progress of a project, they will need to know a frequent basis, day-to-day, week-to-week,
or month-to-month how the project is progressing along the planned route. Any deviations
from this planned route will cost the development some precious resources down the line,
either time or money or schedule. The sooner management can make an informed decision,
the better. A good set of software metrics provides this information. However, clear
guidance must be given on what data to collect and made available to users.

The use of metrics is still in the development stages with no existing standards to what
to count or report. Reports within an organization may fluctuate from project to project,
depending on the importance placed on metrics. This lack of standardization interferes with
comparing of lessons learned from one project to another project.

Software projects, like any other projects contain a certain amount of risk. The use of
inaccurate or paradoxical metrics increases that risk. The factors that contribute to this
include lack of: standardization for languages; rules to compare across languages, such as
Ada and C; accurate size estimations during the requirements phase, when this information
is needed.

Software metrics are not a panacea, but merely a tool that can deliver response to
management and the technical staff on various aspects of a software project. For example,

when using a complexity metric, once a module has exceeded a certain predetermined

threshold, then remedial action might bring the complexity of the module back within
allowed limits by dividing the code into smaller less complex modules. [SLI 87)

C. WHY COUNTERS AT ALL?

The use of size metrics (Source lines of code (SLOC) and logical source statements)
include tracking, planning, budgeting, maintaining and estimating software projects.
Software developers also use software size metrics to plan, control, and improve their
product. [SEI-B 92]

1. Automated versus Manual Counters
Performing software measurements with a purely manual technique is expensive
because of the extra-ordinary amount of time involved even for the simplest of
measurements. In addition, performing any function manually may introduce errors
because humans are fallible. To overcome these problems and provide the flexibility,

consistency and reliability the process of making these measurements must be automated.

2. Counting versus Reporting versus Tracking

The smart software developer will get the most out of the information available
from metrics. The metric numbers are the result of performing some measurements against
a piece of software. These numbers represent the counting portion of the metric. The results
will differ when the rules are changed. The displays of the outputs from the count have to
deal with the reporting aspect of the metrics. The user requesting, the information need to
be able to get the infoir.ation in a form that he is expecting, and one that will be of use.
Tracking refers to the ability to trace the progress of the software development project
completely. During tracking, the man:zer can decide if the project is meeting the schedule.

The Department of Defense (DoD) is trying to deal with the effects nf a reduced
budget. As DoD rightsize itself, organizations are going to have to do more with less. The
software community will be no different. DoD has set up some long term goals that include:

reducing the life-cycle costs by a factor of two; reducing software problems rates by a

factor of ten; achieving new levels of DoD mission capability and interoperability via
software.

These goals imply that DoD can apply some measure of where they are now,
against where they are going, to know if they ever get there. However, no baseline has been
set to measure progress toward these goals. DoD has teamed up with the Software
Engineering Institute (SEI) to provide a part of the baseline that will be necessary to meet
the above goals by the year 2000. Software metrics will provide the measurement from the
baseline of the software development progress. [SEI-A 92]

SEI’s task is to provide a core set of measurements for use within DoD software
projects. In 1992, SEI published several frameworks accomplishing the goal. DoD agencies
can use these frameworks to plan, monitor, and manage its software projects, both internal
and contracted. These SEI framework documents outline how to: define what is to be
measured (set a standard), by using a checklist; and to express clearly the results of those
measurements, (provide unambiguous results) consistently.

The SEI’ frameworks help management to answer several key questions. How big
is the job? Can our staffs meet the added commitments? Can we deliver on schedule? How
reliable is our project? Will the project meet fielding deadlines? Will the project meet the
required specs? Will the project need more time and effort due too unplanned releases to
fix detected bugs? The answers to these questions will help the software developer ensure
the proper mix of personnel are available for the project and give an idea of where the
project is in relation to the baseline.

SEI has concentrated on defining unambiguous measures for size, effort,
schedule, and quality. It is SEI’s objective to provide tools the project manager can use
conceming project planning, project management and process improvement. Consistent

measurements are crucial to the project manager.

“

D. PROBLEM DESCRIPTION

Tools to count lines of code have been around for a long time. However, these tools
are not standardized, automated and can lead to misleading and ambiguous interpretations
of the size of software modules, especially when the person performing the measurement
does not use the method or rules expected by the person requesting the measurement.

One question addressed by this research looks at the ability to automate the SEI
framework for Software Size Measurement. Introducing automation to most processes
reduces the time required to complete the process since machines are inherently faster than
man. If automating the SEI framework for Software Size Measurement provides more

benefits compared to costs, then it may be of value to carry out the framework.

Another question addressed by this research pertains to the ability to provide the
standardization of the SEI framework for Software Size Measurement. Introducing
standardization to the measurement process will provide unambiguous, clear and consistent
reports, that management can use to track their software development process.

A final question addressed by this research looks at how to provide the flexibility
outlined in the SEI framework for Software Size Measurement. The SEI framework is
designed to allow over cighty different values, while still maintaining the consistency and
reliability of the counting tool.

E. OVERVIEW OF THESIS
Chapter II provides background information related to this thesis. Topics covered

include an overview of the SEI frameworks on size, effort and schedule, and quality.
Chapter I discusses the tool design. This includes each of the major parts of the tool, TAE,
Ayacc, and Aflex, giving an overview, purpose and interaction with the other parts. Chapter
IV describes how to use the tool. Chapter V provides a summary of conclusions and further
work. Appendix A contains a user manual. Appendix B list the source code for the tool.
Appendix C lists some sample inputs and outputs.

ﬁ*

II. SEI FRAMEWORK

A. DEFINITION OF FRAMEWORK
A framework is “a structure to hold together or support something” [WAR 90]. SEI

has published three frameworks in the area of software measurement. The three
frameworks are concerned with size, effort and schedule, and quality. These frameworks
are the result of years of work by several groups of software professionals. [SEI-A 92]

SEI does not propose that these frameworks as standards set in concrete, but to use
them as a basis for collecting information concerning the development of software. These
frameworks provide measurements that will lead to unambiguous and mutually exclusive
reports. To achieve this, each SEI framework uses two criteria. The first is communication.
A measurement is not useful if the report user does not understand the results, or the rules
used to get them. The report needs to convey what was measured and what was not
measured. The second criterion is repeatability. The measurement, when applied by others,
should have the same results. Consistent report results provide confidence to the users.
Users will not use a measurement that does not provide stable resuits, [SEI-A 92}

Each framework proposed by SEI has some common structures. They all use
checklists and recording forms. The checklists provide the repeatability mechanism.
Having a checklist filled out and on hand, any person performing the measurement knows
what is to be measured. The recording forms provide this communication mechanism. The
person reading the recording forms can see what was measured and what was not. [SEI-A
92]

Developers of software projects are looking at ways to help manage the entire software
process as the software projects get larger and more complicated. The software developer
goal is to produce code that is on time, reliable, and performs as the users requested.
Software developers can add these frameworks to their toolbox and use them during the life
cycle of a project. The use of measurements can help the software developer produce

quality code on time and under budget. [SEI-A 92]

A problem with previous measurement was not doing the measurement, but
communicating the result so they have meaning to the user. Important parts of the

frameworks are the attributes of the measurement.

1. Attributes

An attribute is “something scen as belonging to or representing someone or
something.” [WAR 90] The attributes associated with the SEI frameworks provide insight,
definition and characteristic of the software project being measured. [SEI-A 92]

The SEI checklist identifies the attributes that need to be measured to ensure the
two criteria of communications and repeatability. The checklist shows what attributes are
included or excluded for each report. To ensure that measurements are accurate and non-
overlapping, SEI has carefully chosen the attributes so that they are orthogonal in nature.
The attributes are the broad categories of the frameworks. Each attribute is made up of two

or more values to provide a finer measurement. [SEI-A 92]

2. Values

The values for each attribute were chosen so that they are mutually exclusive of
each other. The reason for this is to help eliminate misunderstandings that can result if the
values for any one attribute are overlapping. Values are listed on the checklist form. The
measurement user then fills out the form and either chooses each value as included in the
measurement, or excludes the value from the measurement. Statement type is one attribute
within the SEI framework for Size. The listed values for this attribute are: executable,
declarations, comments on their own line, comments on line with source code, comments
that are banners or nonblank spacers, empty comments and blank lines. This is not an
exclusive list, users can add or change as they see fit. However, users need to ensure that
changes or modifications to the values keep the mutually exclusive property. Changes that
violate the mutual exclusion property could result in possible double counting of some
values. [SEI-A 92]

10

3. Reports
After the checklist has been filled out, and the measurement performed, the next
step is to express the results of the measurement in a way that can be understood and read
by the people who use them. E;ch of the three frameworks that SEI published has an
example of some predefined initial reports and the associated value settings. The reports for
the SEI framework on Size are discussed in more detail in chapter three. A more detailed
discussion of reports for the other two frameworks can be found in the Software

Engineering Institute reports.
B. APPLICATIONS OF FRAMEWORK

1. Software Size Measurement:

The SEI framework for size provides two independent templates that can measure
the size of software, physical source lines and logical source statements. The use of size
measurements can be used by software project managers to plan, maintain, track, and
estimate software projects. [SEI-B 92]

Another goal of SEI was to reduce ambiguities and misunderstandings in the
different reports of software size. Without using a process similar to the SEI framework,
reports containing statements like “our activity produced over S00K source lines of code”
would be meaningless to everybody except the person performing the count. The reason
this count is unclear is the fact that the statement does not tell the reader what wa< counted,
what was not counted, rules used to perform the count, if the count included all software
modules, or just newly developed modules. The user of the reports needs to understand the
rules and methods used to perform the counting operations. SEI’s framework on size
provides for complete and explicitly defined measures for both physical source lines of
code and logical source statements. [SEI-A 92]

The framework also provides for the ability to ensuring that the report received
this month is consistent with the report received last month and the one that will be received

a year from now. This consistency will allow users to gain insight into project trends, to

11

cbmpare one project against others, and ultimately to make necessary corrections if needed

in the total software development process. [SEI-A 92]

2. Software Effort and Schedule Measurement:

The framework for effort and schedule provides a starting point for building
unambiguous measures that will help manage, software projects and processes. The SEI
reports are an approach to gather information for defining and recording staff-hours and
related schedule information. There are many reasons for collecting and using data for
staff-hours, three of which are: to pay individuals (payable hours), to charge for hourly
services (billable hours), and to use in productivity and quality studies (actual hours). [SEI-
A 92]

3. Software Quality Measurement:

As with the other SEI frameworks, the goal of the quality framework is to provide
the user the ability to obtain clear, non-overlapping and repeatable reports of software
quality. The framework includes: the relationship of the discovery, reporting, and
measurement of problems and defects; a set of measurable, orthogonal attributes for
making the measurement descriptions exact and unambiguous; checklists for creating
unambiguous and explicit definitions or specifications of software problem and defect
measurements; examples of how to use the checklists to construct measurement
specifications; and examples of measurements using various attributes of software problem
reports and defects. The reports of software quality can help the user to estimate, plan, and
track, the software development process. [SEI-D 92]

C. AUTOMATION OF SIZE MEASURE

There are several reasons for selecting the size measurement as the measurement to
automate first. They are:

* Most of the historical data for cost models and project estimating are based
on physical measures of source code size.

» Size measurements are easier to define and use.

12

D. PREVIOUS SIZE CALCULATORS

There are two size calculators that were looked at as examples of tools to count source
line of code. One tool was a static prototype of the SEI framework, on DOS a platform. The
other tool was a mature DOS product for Pascal programs, to calculate non-SEI size

measures and other metrics.

1. DOS Version of the SEI Framework on Size

The version tested was a prototype of the SEI framework on size. The tool was
not completely functional. The tool as tested only carried out the attribute’s statement type
and origin. The other attributes were scheduled to be set up at a later release date. The tool
also did not allow for the operator to change the settings of the values for the two attributes
supported. The settings for both attributes were set to “included.” [CSC 92]

AdaSAGE provides the user interface to the tool. The interface was a copy of the
checklist form provided by the SEI framework. The tool requires the user to type in the
name of a source file. The source file will contain the names of Ada modules. The tool will
write the results of the measurement to a file. [CSC 92]

A session at a recent software engineering conference included descriptions of
tools developed in parallel with this thesis, but these were unavailable for examination.
[SEI 93]

2. PC-Metric for Pascal
The PC-Metric for Pascal is a DOS-based tool that provides three separate

measurement reports on Pascal programs. The three reports are the complexity report, the
exception report and the error report. As a part of these reports, the PC-Metric for Pascal
also provides information on the number of lines of code contained in the source file.
However, the lines of code are just that, the total number of lines of Pascal code. No
information on the statement types that were counted, how the code was produced, the
origin of the code and so on. The method for obtaining the line count was to count the total
number of lines in the source file. [SLI 87]

13

However, the PC-Metric for Pascal does provide some insight into the
complexity, the exception and errors of the Pascal source file. Also included with the
documentation, is a tutorial on software metrics. The tutorial covers how to develop
metrics, metrics’ accuracy, specific metrics and how to use metrics in software
development. [SLI 87]

E. SUMMARY
This chapter has discussed the SEI framework, the building blocks of the framework,

how the frameworks can be applied, and examples of some tools that provide physical
source lines of code measurements. The SEI framework is designed to provide a flexible,
automated measurement tool based on consistency and reliability. The two tools
summarized above do not provide the flexibility of the SEI framework. The Automated
Ada Physical Source Line Counter provides a flexible, automated tool that provides

consistent and reliable results.

14

P ——

III. TOOL DESIGN

A. ATTRIBUTES SUPPORTED

The SEI framework on size details nine different attributes that are orthogonal in

nature. The Automated Ada Source Line Counter implements six of the nine attributes. The

following sections discuss the attributes in detail. (See Figure 1)

SEI Attributes

* Statement type
* How Produced
* Origin
* Usage
* Delivery
* Development Status
Functionality
Replications
** | anguages

* Implemented in this tool
** Ada is the only language
implemented

Figure 1 SEI Attributes supported and not supported

1. Statement Type
The statement type attribute distinguishes the source statements according to the
function they perform. There are five basic types of statements, they are: executable,
declarations, compiler directives, comments, and blank lines. Comments are further
subdivided into: comments on their own lines, comments on lines by themselves, banner
and nonblank spacers, and empty comments. The value of this attribute is determined for

each physical source line of code during the parsing of the input files. [SEI-B 92]

15

2. How Produced
This attribute is used to identify the process by which the individual line of code
was produced. This attribute is divided into six values, that include: programmed,
generated with source code generators, converted with automated translators, copied or
reused without change, modified, and removed. The value of this attribute is determined by
special comments in the source code. The default value for this attribute is ‘programmed’.

Special comments are discussed in greater detail in PARSER on page 32. [SEI-B 92]

3. Origin

The attribute origin tracks the prior life, if any, of the product software. The origin
attribute is divided into eleven values. The values are the following: new work; a previous
version, build or release; commercial, off-the-shelf software (COTS), other than libraries;
government furnished software (GFS), other than reuse libraries; another product; a
vendor-supplied language support library (unmodified); a vendor-supplied operating
system or utility (unmodified); a local or modified language support library or operating
system; other commercial library; a reuse library (software designed for reuse); and other
software component or library. The value of this attribute is determined by special

comments in the source code. The default value for this attribute is ‘new work’. [SEI-B 92]

4. Usage

The usage attribute makes the distinction of code developed as part of the
software project and code not developed for the software project. The attribute usage is
divided into the values in or as part of the primary product and external to or in support of
the primary product. Code that is developed as part of the software project could have
different costs associated with the development, maintenance, and testing of the code
versus code that is developed for support of the code. For example, test drivers are not
maintained or documented at the same level as the primary code. Distinguishing the

differences is important for reports of productivity, quality, effort, and progress. The value

16

of this attribute is determined by special comments in the source code. The default value
for this attribute is ‘in or as part of the primary product’. {SEI-B 92]

5. Delivery
The delivery attribute distinguish between the form and destination of the source
code. In this tool, delivery means delivered to the organization that will maintain the source
code. The delivery attribute is divided into four values, that include: delivered as source;
delivered in compiled or executable form, but not as source; under configuration control,
and not under configuration control. For reports A through E, this value is set to ‘delivered
as source’. For report F, the tool user has the option to pick one of the four values of this

attribute. The default value for report F is ‘delivered as source’. [SEI-B 92]

6. Development Status

The development status attribute is used to mark the progress of the source code
from the design phase to a finished product. The count of the various values of development
status can provide insight into the development and integration workload yet to be
accomplished. The attribute development status is divided into eight values, which are:
estimated or planned; designed; coded; unit tests completed; integrated into components;
test readiness review completed; software (CSCI) test completed; and system test
completed. The value for this attribute is determined by special comments in the source
code. The default value for this attribute is ‘system tests completed’. [SEI-B 92]

7. Clarifications (General and Ada Specific)

The clarification attributes, both the general and Ada specific, aid in explaining
the rules used to define the differences among the eight values of the attribute statement
type. The general clarifications are for any language. The Ada specific clarifications deal
only with Ada programming language issues. Each general and Ada specific clarification
is associated with a unique statement type attribute value. For example, the default setting

for counting a null statement, is to count the null statement as an executable. The

17

clarifications for reports A through E can not be changed. In report F, the user may change
the clarifications rules from one of the attribute statement type values to another. [SEI-B
92]

B. ATTRIBUTES NOT SUPPORTED

There are two attributes of the SEI checklist that were not implemented in this tool.
They are functionality and replications, which are discussed briefly in the following
paragraphs.

1. Functionality
The attribute functionality deals with whether or not a line of source code is a
functional part of the code or not. The attribute functionality is divided into two parts
operative and inoperative. Inoperative is further divided into inoperative but functional
(intentional dead code, reactivated for special purposes) and nonfunctional (unintentionally
present). [SEI-B 92]

2. Replications

The attribute replication describes how to account for a software project’s master
source statements from its copies. There are four values for the attribute replications, which
are: master source statements (originals); physical replicates of master statements, stored
in the master code; copies inserted, instantiated, or expanded when compiling or linking;
and postproduction replicates -- as in distributed, redundant, or reparameterized systems.
[SEI-B 92] This attribute was not implemented in this tool, although combinations of the
Ada Physical Source Line Counter with a differencing tool such as the unix DIFF might be
useful [SUN 90].

C. DEFAULT REPORTS/OUTPUT

There are a total of six reports that this tool can generate. Five of the reports are defined
by the SEI framework on Size. A sixth report is provided to allow the user to create, modify,

18

and use as they see fit. Appendix C contains examples of each reports output. Each report

will be briefly discussed in the following paragraphs.

1. Report A

Report A is the basic definition for counting physical source lines of code. This
report will give us information on the total noncomment and nonblank physical source lines
of code. Report A explicitly spells out the rules to be used when comments are on the same
lines as other source statements. The report also addresses all origins, stages of
development and code that is integral to the product and external to the product, and forms
of code production. Reports B through F build upon this basic definition. See Figure 2 for
a written specification for this report. No data arrays are included in this report. [SEI-B 92)

For the programming language Ada, measure and record these values:
Total lines
Individual totals for all values included

Figure 2 Written Description for Report A

2. ReportB

Report B provides the capability for project tracking. Report B provides this
information through the expanded use of the development status attribute. For example,
report B will provide the progress of the software project through each of the production
processes, the how produced attribute in comparison to the stage of development and the
development status attribute. This is accomplished through periodic measurements using
report B and comparing the results of the two-dimensional array. See Figure 3 for a written
specification for tiiiz report. Appendix C contains an example of report B and the associated
two-dimensional anay. [SEI-B 92]

3. ReportC
Report C is designed for the end of project data gathering. The results of this
report can be used to improve future estimates and planning for future projects. This data

19

For the programming language Ada, measure and record these values:
Total lines
Individual totals for all values included
A two-dimensional array showing the number of lines
in each development status
for each production class

Figure 3 Written description for report B
would be collected at the end to help fine tune existing estimates and cost models and for

the estimation of future software projects. Report C adds to report A by including the values
of comments on their own lines and comments on lines with source code for the statement
type attribute, the value removed for the how produced attribute, and a two-dimensional
array, six by eight, containing the attributes statement type and how produced. See Figure
4 for a written specification for this report. [SEI-B 92]

For the programming language Ada, measure and record these values:

Total lines

Individual totals for all values included

A two-dimensional array showing the number of lines
in each statement type
for each production class

Figure 4 Written description for report C

4. ReportD
This report measures reuse of software code. The data elements included in this
report will help the user to quantify and interpret the amount of software reuse. This report
can also be used to measure productivity and quality. Report D, in addition to the
information for report A, asks for a two-dimensional array, six by eleven, containing the
attributes of how produced and origin, and includes the value removed for the attribute how
produced. See Figure S for a written specification for this report. [SEI-B 92]

5. ReportE

Report E is the combination of report C and D. Combining the two reports can

save resources including time, money, and paper. However, the trade-off for this report is

20

For the programming language Ada, measure and recard these values:
Total lines
A two-dimensional array showing the number of lines
in each production class
for each origin

Figure § Written description for report D
the creation of a three-dimensional array. Three-dimensional arrays are harder to

communicate to the user, especially using two-dimensional medians such as monitors and
paper. Report C generated one two-dimensional array of six by eight. Report D generated
one two-dimensional array of six by eleven. Report E on the other hand, generates eleven
two-dimensional reports of six by eight. The higher number of arrays are required to
facilitate the display of information that can be displayed on a terminal, written to an ASCII
file, or printed on paper. A three-dimensional array is displayed by taking the third
dimersion of size eleven and creating one two-dimensional array of six by eight from the

other two dimensions. See Figure 6 for a written specification for this report. [SEI-B 92]

For the programming language Ada, measure and record these values:
Total lines
A three-dimensional array showing the number of lines
in each production class
for each origin
in each statement type

Figure 6 Written description for report E

D. USER-DEFINED REPORTS/OUTPUT

The tool enables the user the ability to create any unique report. This report is left up
to the user of the tool to design and create according to requirements. The initial settings
are the same as report A. For instance, the user would use report F to assign a different

priority to the values of the statement type attribute.

21

E. DATA STRUCTURES

There are several key data structures used throughout the tool. The data structures are
declared in the Transportable Applications Environment (TAE) global package because of
the need for TAE generated Ada code to have the ability to set key variables used for every
report and to change, as required, the user defined report.

The key elements of the data structure include: variables used for every report; the size
attributes declared as enumerated types; one five-dimensional array to hold the source line
count per reports; one one-dimension array to track the precedence levels of the statement
type attribute; one two-dimensional array that maps the cight different statement type
values to two boolean variables to track statements on lines; a record structure containing
five fields, one field for each of the five dimensions and a record that contains all of the
supported attribute values.

Several of these different data structures are repeated, one instance of each data
structure for each possible report. Having the multiple instances of the data structure allows
for up to six different reports to be generated at the same time, even though the Ada input
files are only parsed once. A trade-off was made in favor of time to make repeated runs of
the tool versus the extra storage space needed to generate all six reports during one run. A

detailed discussion of each key data structure follows.

1. Variables used for every report

Every time that the Automated Ada Physical Source Line Counter is invoked,
there are two pieces of information that must be entered by the user for the tool to run
properly. The two pieces of information are the names of the input and out files. There are
two other pieces of information that are not mandatory, but will help in the tracking of the
different report versions. The name of the person requesting the information and the name
of the report are non-mandatory.

The input file is an ASCII file that contains the names Ada source file (s) to be
processed by this tool. Even though there exist a cost in time to generate the file with all the

ﬁlenarms, the benefits of this approach outweigh the cost. (See Figure 7) The output file

Input filename Filelist
CEEEE——— Ada_source_file_l.a
Ada_source_file_2.a
Filelist Ada_source_file_N.a

Figure 7 Relationship of input file name and Ada source files to be measured
name is used to create an ASCII file containing the reports requested by the user. At this

time there ia no default name used by the tool.

2. Size Attributes
The five attributes of the SEI framework that are measured in this tool have each
been declared as enumerated types. The values for each attribute enumerated type are the
values for that attribute as defined in the SEI framework for size checklist. Using
‘enumerated types facilitated the use of the Ada language attributes associated with

enumerated types. (See Figure 8) .

type STMT_TYPE is (EXECUTABLE, DECLARATIONS ,
COMPILER_DIRECTIVES,
CMTS_ON_OWN_LINE,
CMTS_WITH_SRC_CODE,
BANNERS_NON_BLANK_SPACERS,
BLANK_COMMENTS, BLANK_LINES);

Figure 8 Attribute Statement Type values declared as an enumerated type

23

3. Five Dimensional Arrays

To keep track of the five orthogonal attributes a five dimensional array was
created, one dimension corresponding to each attribute. This was followed by the creation
of six instances of the five dimensional array. Each instance of the five dimensional array
is associated to one of the six reports. Each line counted of the Ada source files has one of
the values of each attribute associated with it. The Automated Ada Physical Source Line
Counter uses the five-dimensional array to track this association. To calculate the
individual totals for each value, the five-dimensional array is traversed one dimension at a
time. The tool also uses the five-dimensional array when computing the requested two and
three dimensional arrays for reports A through E. (See Figure 9)

type COUNT_ARRAY_TYPE is array (STMT_TYPE,
HOW_PRODUCED,
ORGIN,
USAGE,
DEVELOPMENT _STATUS) of natural;

Figure 9 Declaration of five dimensional array

4. Priority Arrays

The priority arrays are checked each time the lexical analyzer recognizes the end
of the line marker. At this time, the highest priority of the statement type values found on
the line is determined. When the statement with the highest priority is marked as
“included”, the line statement type attribute is set to this value.

For the five default reports A through E, the precedence for each report is the
same and can not change. For the user defined report F, the precedence for each value of
the statement type can be set according to the user’s requirement. The user sets the

precedence levels for report F inside of the user interface. (See Figure 10)

type PRIORITY_TYPE_ARRAY is array (1..8) of STMT_TYPE;

Figure 10 Declaration of Priority type array to track precedence levels

4

5. Flags Array
A two-dimensional array was created to determine when a particular statement
type value has been recognized on a line. The first dimension of the array is the range of
the enumerated statement type. The second dimension of the array contains two boolean

variables. (See Figure 11) One of the boolean values is set to true when the start of a

type FLAGS_TYPE_ARRAY is array (STMT_TYPE, 1 .. 2) of boolean;

Figure 11 Declaration of FLAGS_TYPE_ARRAY

language construct is recognized by the parser. The second boolean value is set to true when
the end of a language construct is recognized by the parser. (See Figure 12) When the
lexical analyzer recognizes the end of line, the flags_array is traversed from highest to
lowest precedence. The statement type value recognized with the highest precedence is

then counted, if required.

set_exec_start : {FLAGS_ARRAY(STMT_TYPE'val(0), 1) := true; };

set_exec_end : (FLAGS_ARRAY(STMT_TYPE’val(0), 2) := true; });

Figure 12 Example of FLAGS_TYPE_ARRAY values set to true

6. Current Settings Record
In order to track each of the five dimensions, the record structure
“current_settings” was created. This record structure is used whenever a physical line of
code is counted. The respective current_settings field is updated when the parser recognizes
cither the language constructs associated with the statement type attribute or the special

comments for the other four attributes.

7. Checklist Variables

A record structure, record_flags, was created to track each attribute and its values.

There is one instance of record_flags for each report. The default values for reports A

25

through E are assigned when the package Global is elaborated. The default values for report
F are the same as the basic report A. The user specifies their own values for report F by
stepping through the user interface panels. See Appendix B for copy the global package

source code.

F. OVERVIEW

The Automated Ada Physical Source Line Counter, as its name suggests, is a tool that
will perform a count on Ada source files and generate reports of the total number of
physical source lines counted and individual totals of each value included for each report
requested. The tool consists of four parts diagramed in Figure 13.

Automated Ada Physical Source Line Counter

User Interface

'

Report I |
Generator

Ada
Reports A - F Source files

Figure 13 Overview of the Automated Ada Physical Source Line Counter

The first part is the data structure. The data structure holds all of the defauit and user
set variables that are used by the other three parts of the tool. The default values are set for
reports A through E during elaboration. The user-specified values for report F are set by the
user via the user interface. The second component is the user interface. The user interface
allows the user to request either five default reports, or to create a report of their own. The
user interface was built using TAE, and based upon the SEI framework on size
checklists.[NAS 90] The next element of the tool is the parser. The parser was created using
two tools, Ayacc, and Aflex. Ayacc generates a parser, where Aflex generates a lexical
analyzer used by Ayacc. The parser created by Ayacc and Aflex is used to distinguish
between the different values of the statement type attribute, recognize special comments,
and at the end of every line determine how the line should be counted, if at all. T.e next
part is the report generator. This part performs the calculations that sum the individual and
aggregate totals and any two and three-dimensional arrays. In addition, each report that is
requested is generated and written to an ASCII file. Each part of the tool will be discussed
in greater detail in the following sections. A user manual for the tool is included in

Appendix A.

G. USER INTERFACE

The user interface provides a window type access that is an easy-to-use method to
request one or several pre-defined reports or to create an individualized report. Each of the
supported attributes is contained in its own panel or screen. The user interface is made up
of eleven panels. (See Figure 14)

The panels are made up of selection items, text items and labels. There are three types
of selection items. The types are push-button, checkboxes and radio buttons. The push-
button is used to connect one panel to another. The push-buttons are shaped like a rectangle.
The checkboxes are used whenever the user has the choice to pick more than one item. The
checkboxes are shaped like a square. For example the user can pick just one report, say A,

an or the user can pick all six reports, A through F. The radio buttons are used when the

27

user can pick only one of the items in the group. The radio-buttons are shaped like a
diamond. At least one item will always be picked. For example, if the user picks the value
blank lines to be included in report F, then the radio button for “Includes” will be
highlighted. The button for “Excludes™ will change from highlighted to blank and vice
versa.

Each of the panels have default settings for push-buttons, radio-buttons and
checkboxes. Each default selection is highlighted. To change or add too the default
selection, the user must use the left mouse button. The default push-button can be selected
when the return key is pressed while the cursor is in that panel.

The push-buttons for each panel are displayed along the bottom. Two of these push-
buttons are common to each panel and will be discussed separately from each particular
panel. The first push-button is the “Quit” button. The other push-button is the “Help”
button. When the quit button is pressed, the quit panel is displayed over the top of the
current panel. The quit panel gives the user the choice to quit the application, or to go back
to the panel that they were just on. When the help button is pressed, a help panel with
information particular to that panel will be displayed. When the user is finished with the
help screen, the help screen will disappear and the panel that initiated the help screen will
again be the active screen.

The first panel is an introduction panel. The introduction panel contains the name of
the tool, name of the author and three push-buttons displayed along the bottom. Beside the
quit and help push-buttons, the other push-button is the “Next screen” button. The next
screen button will make the introduction panel disappear, and bring up the second panel.
The next screen push-button is the default push-button for the introduction panel.

The second panel is where the user will enter the mandatory information for the tool
to operate. The second panel contains four string keyin areas, a group of six checkboxes
and four push-buttons. The string keyin areas are for the report name, file list, requestor
name and output file name, respectively. The user enters the appropriate information by

placing the cursor over the window and type in the appropriate information. Six checkboxes

28

of the attribute statement type. TAE will ensure that the precedence entered is within the
range of one through eight. However, if the user does not ensure that each precedence value
is unique, the results for report F may not be accurate.

The eight and ninth panels are for the general and Ada specific clarifications panels
respectively. These two panels are similar to panel three, the difference being the number
of radio-buttons. There are a total of thirteen general clarifications and six Ada specific
clarifications. Each clarification is associated with one of the values of the attribute
statement type.

The tenth nanel is the generate report panel. This panel has two push-buttons displayed
along the bottom of the panel, they are labeled cancel and generate report. The generate
report is the default button. The cancel button will make the generate report panel
disappear. The user must then use the mouse to click on the icon of the previous panel. In
addition to the push-buttons, this panel displays a text message explaining the different
options available to the user.

The last panel is the quit panel. This panel also has two push-buttons displayed along
the bottom of the panel, they are labeled qui: an! cancel. The quit button is the default
button. When the quit button is selected, the panel will disappear and the tool will
terminate. When the cancel button is selected, the quit panel disappears leaving the
previous panel as the active panel. In addition to the push-buttons, there is a text area that

displays the options to the user. This is provided in lieu of a help button.

«oE T ——

réprcsent six different reports that can be generated by this tool. Any one or all of the
checkboxes may be selected. Report A is the default selection. In addition to the quit and
help push-button, the second panel also has displayed along the bottom a “Generate
Report” push-button and a “Specify Custom Report” push-button. When the generate
report button is pressed, the second panel will disappear and the generate report panel will
appear on the screen. When the specify custom report push-button is selected, the second
panel disappears, and activates the third panel. The generate report push-button is the

default push-button for the second panel.

The third through the seventh panels contain the attributes of the SEI checklist, one
attribute per panel. There are five push-buttons on each of these panels. The first two push-
buttons are the quit and help buttons. Another push-button is the “Previous Screen” push-
button. When the previous screen button is pressed, the current panel disappears, and
activates the previous panel. The next push-button is labeled “Next Screen”. When pressed,
the current panel will disappear, activating the next panel in the sequence. The last push-
button is the generate report button. When this button is pressed it will make the current
panel disappear and activate the generate report pancl. The generate report panel is the
default button.

Along the top right comer in panels three through seven are two radio-buttons
displayed, one above the other. These radio-buttons allow the user to specify that in
addition to the individual totals, this attribute will be included in a multi-dimension array
at the end of the normal report format. When this choice is selected, all of the attributes
selected as such (must have at least two) will be displayed as two or three dimensional
arrays at the end of report F. When more than three attributes are selected, then all
combinations of N choose three will be displayed at the end of report F, where N will be
either four or five. The other major part of panels three through seven are the radio-buttons
that correspond to the values for each attribute. All of the radio-buttons are the same, either
the include button is highlighted or the exclude button is highlighted. Panel three also has

eight integer keyin windows. Each integer keyin window corresponds to one of the values

29

Introduction
Panel

Y

Second
Panel

y

Attribute
Statement type

Quit } j Generate

Application Atibute Report
Panel How Produced / Panel

by

Attribute
Origin
Attribute
Usage/Delivery

iy

Attribute

Development
Status

’

Clarifications
(General)

I |

Clarifications
(Ada specific)

Figure 14 Overview of User interface

3

H. PARSER

The Automated Ada Physical Source Line Counter uses the generated parser from
Ayacc [TAB 88] to differentiate between executable, declarations and compiler directives.
These are three of the eight values associated with the attribute statement type. To do this,
the specification file for Ayacc, ada.y, was slightly modified.

The differences between the three attributes were used to set flags when a particular
language cons’ ict was recognized. To set these flags, several nonterminals were added to
ada.y. The purpose of these nonterminals was to have the parser execute the associated Ada
code. (See Figure 15)

set_exec_start : {FLAGS_ARRAY(STMT_TYPE'val(0), 1) := true; };

set_exec_end : {FLAGS_ARRAY(STMT_TYPE val(0), 2) := true; };

Figure 15 Example of Ada code executed inside of Ayacc
The Automated Ada Physical Source Line Counter uses the lexical analyzer generated
by Aflex [SEL 90] for several purposes. The primary reason is to provide the lexical
analyzer function required by Ayacc. This tool also uses Aflex to find all occurrences of

each type of comment and blank lines in the Ada source files. (See Figure 16)

-- Checking for blank lines

AN]*n {ECHO;
FLAGS_ARRAY (STMT_TYPE’VAL (7), 1) := TRUE;
ADD_TO_ARRAY;
linenum; }

Figure 16 Example of rule to find blank lines

This tool also uses the lexical analyzer to recognize certain Ada source statements/
fragments in certain situations. These situations have been derived from the clarifications
code (general and Ada specific). For example, rules were added to the Aflex specifications
file which will find when one of the following occurs: an “elsif”’ on line by itself; an “else”

on line by itself; a “then” on line by itself; or “others” on line by itself. (See Figure 17)

32

---- Looking for an elsif on a line by itself

-- ANJ*"elsif”[\]*\n {ECHO; ENTER(Z);

if COUNT_CLARIFICATION (GLOBAL RECORD_FLAGS_F.PANEL10.LINE_11) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;

FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
ADD_TO_ARRAY;

end if;

linenum;

rewumn(ELSIF_TOKEN);}

-- Looking for an “else” on a line by itself

AN)*"else”N)*\n {ECHO; ENTER(Z);

if COUNT_CLARIFICATION (GLOBAL RECORD_FLAGS_F.PANEL10.LINE_10) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
ADD_TO_ARRAY;

end if;

return(ELSE_TOKEN); }

linenum;

Figure 17 Example of rules added to Aflex
Finally, this tool uses the lexical analyzer from Aflex to recognize when any of the 27

special comments or flags have been used in the Ada source files. The special comments
are used to change the values of the four attributes How Produced, Origin, Usage, and
Development Status. When a special comment is found, Ada code is executed to set the
global flag SPECIAL_COMMENT to true and to set the associated current_settings field

to the corresponding value. See Figure 18.

33

“-.* Generated” {ECHO;
SPECIAL_COMMENT := TRUE;
CURRENT_SETTINGS.SECOND_ATTRIBUTE := HOW_PRODUCED’val (1);)

Figure 18 Example of code to recognize Special comments
When the lexical analyzer reaches the end of each line, the procedure

ADD_TO_ARRAY is called. This procedure determines which reports are active,
determines the highest priority of the statement type(s) recognized on the line, and
determines if this statement type value is included or excluded for the reports that are
active. If the statement type value is included, then the count for that report is incremented.

I. REPORT GENERATOR

The report generator provides for the generation of the reports after the Ada source
files have been parsed. The report generator is made up of several Ada packages. Two of
which will be discussed here. The main package is the report_package. The main functions
of this package are to determine which reports have been requested; perform the necessary
calculations of the values for each report: and to create and write to the output file the
reports requested. Several of the default reports require the generation and output of two or
three dimensional arrays. To accomplish this, a separate generic package was created.

All calculations of the two and three dimensional arrays are performed in the generic
package. The large number of multi-dimensional arrays that could occur in report F was the
driving factor for this package. In report F, the user can request data arrays for all five
attributes. This would require ten two-dimensional arrays of five choose two and ten three-
dimensional arrays of five choose three. To reduce the number of instantiations of the
generic package, the permutations of the two and three dimensional arrays were checked

and the duplicates were discarded. The generic package is instantiated fourteen times.

J. SUMMARY

This chapter discusses the attributes supported, attributes not supported, default
reports A through E, user defined report F, key data structures, user interface, parser and

T

the report generator. Together, these parts show that the SEI framework for Size can be
implemented into a fool providing flexibility and maintaining the two criteria of

communication and repeatability.

35

o

IV. TOOL USAGE

A. INTRODUCTION

This chapter describes what is needed to use the tool in section B. Some limitations of
the tool are discussed in section C. Section D goes over the command line invocation. An
extended example of an Ada source file is discussed in Section E. Finally, section F
discusses the reports generated as output from the extended example. Appendix A provides

a complete user manual for the tool.
B. REQUIREMENTS

1. Hardware
The Automated Ada Physical Source Line Counter requires the use of an Unix
workstation. The tool has successfully run on several SPARC compliant computers:
Solbourne Computer S4000, Sun SPARC station 10, Sun SPARC station 1 and Sun
SPARC station 2.

2. Software
The Automated Ada Physical Source Line Counter requires the use of “X-

windows” to operate. This tool has worked under Openwindows and Motif.

3. Input
The Automated Ada Physical Source Line Counter requires the entering of
several pieces of information to run correctly. The information that is required are the input
filename, output filename, name of person requesting report and name of the report. The
first two items are required information. The second two pieces of information are not
required, but suggested.

4. Legal Ada Syntax
The Automated Ada Physical Source Line Counter will only work with

syntactically correct Ada source files. In some instances, generated code will have

36

e

embedded special characters, such as (AL, page breaks for printing) that will cause a syntax
error in the parser. This particular error does not cause the tool to terminate, but there may
be some embedded characters that do. This prototype tool was built using version 1.0 of
Ayacc [TAB 88]. A newer and improved version of Ayacc was released after the tool was

built and offers some improvement in acceptance of Ada source files.

C. LIMITATIONS

1. Package Conflicts

The parser generated by the two tools Ayacc uses a grammar supplied be the user.
[TAB 88) For this tool, the grammar was the one supplied with Ayacc, but modified for
purposes of the tool. For the situation of recognizing either a package spec, a package body
or a generic package requires that for the proper counting of lines, the entire package spec,
package declaration or generic package declaration must be one line or the final count may

be incorrect.

gen_inst :
PACKAGE_TOKEN IDENTIFIER IS_TOKEN
NEW_TOKEN expanded_n .gen_act_part. *;’

{ PROCEDURE __ident__IS_
NEW_TOKEN expanded_n .gen_act_part. *;’

| FUNCTION_TOKEN designator IS_TOKEN
NEW_TOKEN expanded_n .gen_act_part. *;’ ;

Figure 19 Example of Ada.y input file to Ayacc

2. Coding Style
The Automated Ada Physical Source Line Counter counts physical source lines
of code and is based upon the SEI framework on size. [SEI-B 92] Different coding styles
can and will result in different results. For example, let’s compare a short example of the
same code, but different writing styles. (See Figure 20) The total number of non-comment,

non-blank lines for version one would be two. However, the total for non-comment, non-

37

blank lines for the same exact code in version two results in a total of five. The use of a
pretty printer on the Ada source files prior to using the Automated Ada Physical Source
Line Counter will ensure consistent results for reports A through E.

Version One
procedure EXAMPLE_ONE is TEMP_INT : integer:= 0; begin
TEMP_INT := TEMP_INT + |; end EXAMPLE_ONE;

Version Two
procedure EXAMPLE_TWO is
TEMP_INT : integer:= (;
begin
TEMP_INT := TEMP_INT + 1;
end EXAMPLE_TWO;

Figure 20 Example of two different coding styles

D. COMMAND LINE INVOCATION

To start the Automated Ada Physical Source Line Counter, the user must either be in
the directory that contains the tool or have the directory containing the Automated Ada
Physical Source Line Counter in a valid path statement. In addition, the user must be
running in an X-windows environment (operating motif, for example). The tool is started

by any Unix program-execution procedure, but input and output may not be redirected.
E. EXTENDED EXAMPLE

1. Sample Application
The package TASK_PACKAGE was created as part of an earlier class

programming project. This package just one of several packages created for a class project.

The overall objective of this project was to read in a file containing initial information about

38

o

a spaceship. The information included location in three-dimensional space, speed in each
of the three directions and remaining fuel. The object of the program was to be able to
accept input from a user via the keyboard at least every second and update the spaceships
parameters. This file was chosen for the extended example because it was of moderate

length, involved a number of different Ada statements in one file.

2. User Interface
In order to see the actual measurement results for an Ada source file performed
by this tool, the tool was invoked with the file EXAMPLE_FILE. This file contained the
Ada package TASK_PACKAGE. (See Figure 21) This section works through an example

task_package.a

Figure 21 Contents of EXAMPLE_FILE

of how to use the tool and how the tool works. This example will result in the generation
of reports A through F. The tool is started as explained in section A. The user then places
the cursor inside of the introduction panel and presses the carriage return. The information
needed to properly run the tool is typed into the text keyin fields of panel number two. (See
Figure 22) The tool needs this information in order to know the correct input and output
files to open and create respectively. In addition, the name of the report and person
requesting report are entered. The next step is to choose the report(s) the tool are to
generate. (See Figure 23) Report A is already marked so no further action is required. For
reports B through F the corresponding checkbox must be marked by placing the cursor over
the checkbox and/or label for reports B through F and press the left mouse button. Since
report F has been chosen, the next step is to place the cursor over the push-button Specify
Custom report. This action will cause panel number two to disappear and activate panel
number three.

The changes for panel three include marking all of the radio-buttons for the
attribute statement type values as included and selecting the push-button generate report.

39

Report Name: Thesis example
File List: example
Requestor Name: Kevin J. Walsh
Output File Name: example.out,

Figure 22 Example of text keyin fields

Report Type
B A: Basic B D: Reuse Measurement
B B: Project Tracking B E: Project Analysis (C+D)
B C: Project Analysis B F: Custom Report

Figure 23 Example of marked checkboxs for selecting reports A - F

40

(Sec Figure 24) Marking all of the radio-buttons as included customizes report F to
measure all lines of tl.c input Ada source file as one of the eight possible statement type
values. When the push-button generate report is selected, panel number three will disappear
and the generate report panel appears. Since no mistakes have been made, the next step is

to select the push-button generate report. The generate report panel will disappear.

1. Executables: 1 ¢ Includes <) Excludes
2. Nonexecutables:

3. Declarations 2 ¢ Inchdes) Exclodes
4. Compiler Directives 3 @ Includes O Excldes
5. Comments

6. Ontheirown d ¢ Includes ¢ Excludes
7. With Source Code 5 ¢ Inclndes <) Excludes
8. Banners/non blank 6 ¢ Inclues) Excludes
9. Blank (empty)comments |7 @ Includes Excludes
10. Blanklines N ¢ Includes ¢ Excludes

Figure 24 Example of customizing report F

The user interface portion of the tool is now complete. Control of the tool now
passes over to the parser section. The file list file name entered in panel two is opened to
read the name(s) of the Ada source file(s). In this example, the file task_package.a is

opened and the parser starts to work. To explain how the parser section of the tool works,

41

an example of five of the possible values of the attribute ‘statement_type’ are discussed in

the following paragraphs.

3. Statement Processing

The flexibility of the Ada programing language made it necessary to create
several variables that this tool and in particular the parser uses to recognize the various
values of the attribute ‘statement_type’. The Ada language allows more than one statement
type on a line and allows for executable statements, declarations and compiler directives to
extend over more than one line. To account for this, the parser needs to mark the start and
end of executable statements, declarations and compiler directives; and also to track when
either an executable statement or declaration or compiler directive extends beyond one line.
The variables are outlined by statement type and function in the figure below. (See Figure
25) The variables used for compiler directives is included in Figure 25, even though the
extended example does not include an example of a compiler directives, the function and

actions are similar to executable and declaration statements. The code used for the extended

example is in Figure 26.
Mark start of | Mark end of | Track multi-
statement statement line statement
variable variable variable
Executable exec_start exec_end exec_level
Declaration dec_start dec_end dec_level
Compiler Direc- pragma_start | pragma_end | pragma_level
tives

Figure 25 Variables used during parsing of source files

a. Executable Statements

The parser processes the Ada source sequentially, reading in tokens via the
lexical analyzer. When the parser recognizes the keyword ‘select’ as starting an executable
statement, exec_start is set to true (See bubble 1 in Figure 26). When the lexical analyzer

reaches the end-of-line marker and the procedure add_to_array is called.

42

Once inside add_to_array, the values of exec_start and exec_end are
evaluated to determine if the variable exec_level needs to be increased or decreased. In this
case, the variable exec_level is increased. The next check made is to determine if this line
of code is either a comment on its own line, a banner comment, an empty comment or a
blank line. For this line, all of these cases fail.

The next part of the code checks from the highest to the lowest precedence
statement type. In this case, the execution statement precedence is the highest, so the loop
is traversed only once. Since the exec_start flag is true, the current_settings.fist_attribute is
set to executable. Now the line is ready to be added to all applicable arrays.

The procedure determine_which_array is called with the variable
current_settings. This procedure will add this line to all applicable arrays as long as all five
values of the variable current_settings are valid for each report requested. In this case, all
six reports have been requested and the values for the variable current_settings are valid for
each report. The corresponding entry in the arrays for each report is increased by one. Once
the arrays are modified control is passed back to the parser.

For the second through the fourth line of this executable code, the variable
exec_level is greater than zero and the variables exec_start and exec_end are false. The
lexical analyzer reaches the end-of-line marker and checks the status of the flag settings.
Since the variable exec_level is greater than zero, then the variable exec_start is set to true.
In this situation, the variable current_settings.first_attribute is again set to executable, and
then processed as the first statement.

At the beginning of the last executable line is this example, exec_level is
greater then zero. When the parser reaches the ‘end_select’, the end of the executable
statement recognized and the flag exec_end is set to true. Before the flags_array is checked,
the variable exec_start is set to true because of the fact that exec_level was greater than
zero. Now when the flags_array is checked, both of the variables exec_start and exec_end
are true. The variable current_settings.first_attribute is assigned the value of executable,

and processed as were the preceding executable statements.

43

Q -- Task allows the user to input data to the program.
0 -- Task will verify input to ensure that input is valid

task body KEYREAD is

CHARACTER_INPUT : ROCKET_CONTROL_INPUT; @
CHARACTER_IO : character;

DONE : boolean := FALSE;

TEST : natural;

O™

select

accept start;
or

terminate;
end select;

Figure 26 Sample input code

For the last executable line in this example, the variable exec_level and
exec_end are both set to true. When the lexical analyzer reaches the end of the line marker,
the flags_array is checked. With the executable statements having the highest precedence,
they are checked first. Both of the flags are set to true, which means that at least one
executable statement either started and finished on this line or an executable statement was
finished on this line. In this case, it was the later of the two. The variable
current_settings.first attribute is assigned the value of executable. Then the variable
current_settings is checked for each report. In this case, for all reports, the current_settings

are valid and each report count_array is incremented by one.

b. Declaration Statements
When the parser recognizes the identifier ‘character_input’ as the start of a
declaration statement, the variable dec_start is set to true (See bubble 2 of Figure 26). When
the parser reaches the semicolon, it recognizes the end of the declaration statement and sets

the variable dec_end to true. In this case, there are no further statement types and the end-

of-line marker is reached in the lexical analyzer. At this point the procedure add_to_array
is called and is processed as discussed above. In this example, all four declaration

statements are parsed and counted in the same manner as the first statement.

¢. Comments on Own Line
Unlike executable statements, declarations and compiler directives, all
comments and blank lines are handled directly from the lexical analyzer. When the lexical
analyzer recognizes a comment on a line by itself, (See bubble 3 in Figure 26), a comment
flag is set to true, the procedure determine_type_comment is called first and then the
procedure add_to_array is called. The lexical analyzer recognizes a comment on a line by
itself using the following rules:

* Zero or more spaces or tabs between the start of line marker and two
hyphens.

» Any combination of one or more characters between the two hyphens and
the end of line marker.

The procedure determine_type_comment is passed the length of the current
line, the third character the line and the string of characters from one to the current line
length. The main purpose of determine_type_comment is to see if the current comment
being parsed is either a regular comment on a line by itself or a banner comment. The
actions taken for banner comments are discussed below. In this case, the comment is not a
banner comment.

Once inside add_to_array, the first check that is applicable for comments is
determining if the current comment is a full line of code. This is true for this case. The
current_settings.first_attribute will be set to comments_on_own_line and the procedure
determine_which_array will be called. As discussed earlier, the procedure
determine_which_array will check all of the five fields of the variable current_settings and
increase each array by one when no discrepancies are found. In this case, only the arrays
for reports C, E and F are incremented. They are the only reports that have comments on

own line marked as included.

45

d. Banner Comments
A banner comment is a line of symbols used to visually separate blocks of
comments or blocks of source code. (See bubble 4 in Figure 26) The actions taken for
banner comments are similar to regular comments except as noted here. Inside of the lexical
analyzer there are two places where a banner comment may be recognized. The first rule is
the same rule discussed above for comments. The second rule that looks for a banner
comment made up of just hyphens. The rule used is as follows:

+ Between the start of line marker and the first three hyphens, there can only
be zero or more blanks and or tabs.

* Following the first three hyphens there can be zero or more hyphens.

» Between the hyphens and the end of line marker there can only be zero or
more blanks and or tabs.

In the first case the procedure determine_type_comment is called. The
comment is then parsed looking for a repetition of the third through the sixth character. The
third through sixth character needs to repeated at least four times to count the comment as
a banner comment. If the comment meets the criteria, then the start and stop flags for banner
comments are set to true. If the comment does not meet the criteria then the start and stop
flags for a comment on a line by itself are set to true. The procedure add_to_array is called

next. The actions taken are similar to those discussed above,

e. Blank Lines

When the lexical analyzer recognizes a blank line (see bubble 5 in Figure 26)
the blank_line flag is set to true and the procedure add_to_array is called. In this example,
for any of the blank lines, the start and end flags for blank lines will be set to true.

Once inside add_to_array, the first check that is applicable for blank lines is
determining if line of code in question is a full line of code. This is true for this example.
The current_settings.first_attribute will be set to blank_lines and the procedure
determine_which_array will be called. As discussed earlier, the procedure
determine_which_array will check all of the five fields of the variable current_settings and

46

FL_“

ihcreasc the corresponding entry of each array by one if no discrepancies are found. In this
case, this line will only be added to report F. Reports A through E do not have blank lines

marked as included, therefore their arrays are not increased.

JS. OurpuT
After the source files have been parsed and measurements collected, the data
must be presented in a way that can be read and understood by the people who request the

measurements. For the example of using task_packag.a as the Ada source files, a copy of

cach possible report was requested and generated. The different reports will show how
using different rules can result in different but correct results.

For brevity, only parts of each report are shown. The complete listing of each
report are included in Appendix C. The file task_package.a was processed by the
Automated Ada Physical Source Line Counter producing reports A through F. (See Figure
27) (See Figure 28) (See Figure 29) (See Figure 30) (See Figure 31) (See Figure 32) To
compare the results of this tool, the Unix utility wc [SUN 90] was also ran on the file
task_package.a, which calculated a total of 284 lines for the file. Reports A through the F
also report the number of lines, but also provide additional information as detailed in the
SEI Framework for Size Measurement. [SEI-B 92]

Report A is *: tools basic definition for counting physical source lines of
code. Report A details the total number of lines and individual totals for each value marked
as included. Report A measures all noncomment and nonblank physical source line. (See
Figure 27) Report A measured a total of 193 lines of physical source lines of code.

Report B is an example of a report that can be used for project tracking. The
results from this report can be used to track development status. Report B measures the total
number of lines, individual totals for values marked as included and a two-dimensional
array consisting of the attributes development status and how produced. (See Figure 28)
This report will also count any removed code if annotated with a special comment. Report
B measured a total of 193 physical source lines of code.

47

REPORT A

Report Name: Thesis example

File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0O
Total Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence =>1 XXXX 157
2 Nonexecutables

3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments

6 On their own lines 4 XXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 27 Partial output of Report A
Report C is an example of a report that can be used for project analysis. This
report would usually be requested only at the end of a project. The results would be used to
provide for better estimates of future projects. Report C measures the total number of lines,

individual totals for all values marked as included and a two-dimensional array consisting

48

REPORT B

Report Name: Thesis example

File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

When a line or siatement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables

3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
S Comments

6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 28 Partial output of Report B

of the attributes statement type and how produced. Report C measured a total of 240

physical source lines.

Report D is an example of a report used for reuse measurement. The results

of this report can be used to evaluate the amount of software reuse. Report D measures the

total number of lines of lines, individual totals for all values marked as included and a two-

49

REPORT C

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0O
Total
Includes
Statement type

When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence=> 1 XXXX
2 Nonexecutables

3 Declarations 2 XXXX
4 Compiler Directives 3 XXXX
5 Comments

6 On their own lines 4
7 On lines with source code 5
8 Banners and nonblank spacers 6
9 Blank (empty) comments 7
10 Blank lines 8

Total Individual
Excludes totals

157

36
0

47

XXXX 0
XXXX 0
XXXX 0

Figure 29 Partial output of Report C

Report E is an example of the combination of two previous report

50

dimensional array consisting of the attributes how produced and origin. For this example

file, report D measured a total of 193 lines of physical source lines of code.

specifications. Report E is also used for project analysis. This report would be requested at
the end of a project. The results would then be used to better estimates for future projects.

m

REPORT D

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence=> 1 XXXX 157
2 Nonexecutables

3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments

6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0

Figure 30 Partial output of Report D
Report E measures the total number of lines, individual totals for all values marked as true
and a three-dimensional array consisting of the three attributes how produced, statement
type and origin. For this example file, report E measured a total of 240 physical source lines
of code.

51

REPORTE
Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Mecasured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence => 1 XXXX 157
2 Nonexecutables

3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXX 0
5 Comments

6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXX 0
10 Blank lines 8 XXXX 0

Figure 31 Partial output of Report E
Report Fis aus. _.cfined report. The user can change any of the values for
each of the five attributes supported from included to excluded or vice versa. In addition,

the user can request any combination of two, three, four and five dimensional arrays.

52

W——L

Howevcr, any combination of four or five dimensional arrays (all five attributes) will be
reported as ten three dimensional reports. In this example report F measures the total lines,
individual totals for all values marked as included. In contrast to report A that measures
only noncomment and nonblank lines, report F measures all physical source lines of code.
For this example, report F measures a total of 284 physical lines of code. This is the same
result as the Unix wc utility. However, report F gives the reader more information than just

the total number of lines.

F. SUMMARY

In summary, this chapter has discussed the tool requirements, tool limitations,

command line invocation, an extended example and reports generated from the extended

example.

53

REPORTF

Report Name: Thesis example

File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 284
Estimated: 0
Total Total
Includes Excludes
Statement type

When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence =>1 XXXX
2 Nonexecutables

3 Declarations 2 XxXXX
4 Compiler Directives 3 XXXX
5 Comments

6 On their own lines 4 XXXX
7 On lines with source code 5 XXXX
8 Banners and nonblank spacers 6 XXXX
9 Blank (empty) comments 7 XXX
10 Blank lines 8 XXXX

Individual
totals

157

Figure 32 Partial output of Report F

54

V. SUMMARY AND CONCLUSIONS

There were two areas addressed by this research, the first was to look at the possibility
of automating the SEI Framework for Size Measurement. The second was to look at how
to provide the flexibility outlined in the SEI Framework for Size Measurement. This
chapter provides the answers to these questions. Section A summarizes the significant

results of this research. Section B concludes by giving suggestions for future research.

A. RESEARCH SUMMARY

The research studied the SEI Framework and developed a tool to implement attributes
of the framework. It was determined that a prototype tool could be implemented supporting
the following attributes statement type; how produced; origin; usage and development
status. The user-interface was designed to mimic the SEI Checklist for each supported
attribute. The user-interface calls a parser that performs the measurements according to
user-defined requests. Once the parser calculates the counts for the source, the final step is
to generate the user-requested reports.

After performing the development, testing and evaluation of the various features of
this project, we have reached the following conclusions:

The first result of this research demonstrated that the SEI Framework for Size
Measurements can be implemented in a tool using the Ada programing language. The tool
consists of programed Ada code and generated Ada code. The generated Ada code was
produced using TAE, Aflex and Ayacc. TAE provides the user-interface; Aflex produces a
lexical analyzer; and Ayacc produces a parser. The programmed Ada code was used to
integrate the three tools and to produce a report generation capability. The result is a tool
that implements a major portion of the SEI Framework in Ada, with minimal execution
cost.

The second outcome of this study demonstrated that the framework’s flexibility can

be maintained and implemented using source flags. The tool uses those flags to capture the

55

flexibility of SEI's framework checklist and generate multiple reports during one pass of
the Ada source files. Another mechanism employed the use of global variables that are used
during the parsing of the Ada code. These global variables are declared for each report to

separate the different values the supported attributes may have.

B. RECOMMENDATIONS

Program managers and software developers should use tools such as the one
developed in this research to track the entire software project process and compare the
current program state against the estimated or planned program state at predetermined
points in time. The results of the tool provide clear and consistent measurement results
thereby allowing for more accurate decision making.

Since this work is among the first to use the SEI’s framework, there are a large number
of areas where it can be expanded with future studies. Some of these include:

The entire set of attributes outlined in the SEI Framework for Size Measurement is not
implemented in this tool. The functionality and replication attributes are not supported in
this tool. The attribute functionality identifies the number of lin.. of code that are a
functional part of the code and the number of lines of code that are not functional part of
the code. Whereas the attribute replication describes how to account for a software project’s
master source statements from its copies. To implement both of these attributes would
require research into how to integrate existing tools, such as the Unix diff, or to build other
tools.

The Automated Ada Physical Source Line Counter only measures physical source
lines of code. The SEI framework also allows for measurement of logical source
statements. To implement logical source measures research is needed to define exact and
complete rules for identifying the beginnings and endings for all possible statement types.

The current tool is implemented for the Ada language. The tool can be extended to
support other programming languages, such as C and C++. Developmeat of an appropriate

C parser would be needed along with interaction into the tool itself and its user-interface.

56

Currently the SEI framework does not involve measurements in areas outside of size,
effort and quality. Research extending the SEI framework to other metric principles such
as complexity is needed.

Finally, this tool provides a clear and consistent size measurement of Ada source files.
The result of this and future research will improve the ability of software developers to
accurately quantify and measure software projects. The metrics produced by these efforts
will improve software productivity and quality. These metrics will provide additional tools
to the software developer to ensure that projects meet the time and cost constraints. This
research has established some initial observations and steps of how to automate the SEI

Framework for Size Measurement, but more questions are left unanswered.

57

APPENDIX A USER MANUAL

A. REQUIREMENTS

1. Hardware
The Automated Ada Physical Source Line Counter requires the use of an Unix
workstation. The tool has successfully run on several SPARC compliant computers:
Solbourne Computer S4000, Sun SPARC station 10, Sun SPARC station 1 and Sun
SPARC station 2.

2. Software
The Automated Ada Physical Source Line Counter requires the use of “X-

windows” to operate. This tool has worked under Openwindows and Motif.

3. Input

The Automated Ada Physical Source Line Counter requires the entering of
several pieces of information to run correctly. The information that is required are the input
filename, output filename, name of person requesting report and name of the report. The
first two items are required information. The second two pieces of information are not
required, but suggested.

Special comments are used to distinguish between the different values of the four
attributes how produced, origin, usage and development status. (See Figure A-1) These
special comments must be entered by the code maintainer manually. These special
comments flags are recognized by the lexical analyzer and change the second through the
fifth field of the variable current_settings. All special comments are in the form of “--
*_<text>". The double hyphens identify the line as a comment. The asterisk is included for
compatibility with other tools such as Adadl. [SSD 90] The text corresponds to the unique
values of the four attributes how produced, origin, usage and development status. The lines

that the special comments are on are not included in the measurement.

58

_—

Attributes | Description
How Programmed

--*_Programmed Statements prepared by programmers that are
not modifications of pre-existing statements

--*_Generated Created by using tools to produce compilable
statements automatically

--*_Converted Pre-existing statements that are translated
automatically or with minor human interven-
tion

--*_Copied Those statements taken verbatim from other
sources and used as part of the master source
code for the new product

--*_Modified Modifications are adaptations made to pre-
existing statements so that they can be used
in a new product, build, or release

--*_Removed All statements that are removed from prior
code when that code is copied or modified for
use in a new or revised product

Origin

--*_New_work Statements that implement new designs

--*_Previous_version A previous version, build or release

--*_COTS Commercial off the shelf software

--*_GFS Government furnished software

--*_Another_product Another product

--*_VSL_spt_library Vendor-supplied language support library
(unmodified)

--*_VS_OS_or_utility A vendor-supplied operating system or utility
(unmodified)

--*_A_modified_spt_lib A local or modified language support library
or operating system

--*_Other_comm_lib Other commercial library

--*_Reuse_library A reuse library (software designed for reuse)

--*_Other_Software_component Other software component or library

Figure A-1 Special Comments

59

Usage

--*_Part_of_product

All code incorporated into the primary prod-
uct and all code delivered with or as part of
the product that is developed and tested as if

it were to operate in the primary product

--*_External_to_product

All code that is produced or delivered by the
project that is not an integral part of the pri-

mary product
Development Status
--*_Estimated_or_planned The total number of lines estimated for a par-
ticular software module
--*_Designed Appropriate stage of 2167 development
--*_Coded Appropriate stage of 2167 development

--*_Unit_tests_completed

Appropriate stage of 2167 development

--*_Integrated_into_components

Appropriate stage of 2167 development

--*_Test_readiness_review_completed

Appropriate stage of 2167 development

--*_CSCI_completed

Appropriate stage of 2167 development

~-*_System_tests_¢omplctcd

Appropriate stage of 2167 development

Figure A-1 Special Cumments

4. Legal Ada Syntax

The Automated Ada Physical Source Line Counter will only work with
syntactically correct Ada source files. In some instances, generated code will have
embedded special characters, such as (AL, page breaks for printing) that will cause a syntax
error in the parser. This particular error does not cause the tool to terminate, but there may
be some embedded characters that do. This prototype tool was built using version 1.0 of

Ayacc [TAB 88]. A newer and improved version was released after the tool was built and

offers some improvement in acceptance of Ada source files.

B. LIMITATIONS

1. Package Conflicts
The parser generated by the two tools Ayacc uses a grammar supplied be the user.
[TAB 88] For this tool, the grammar was the one supplied with Ayacc, but modified for
purposes of the tool. For the situation of recognizing either a package spec, a package body
or a generic package requires that for the proper counting of lines, the entire package spec,
package declaration or generic package declaration must be one line or the final count may

be incorrect.

gen_inst :
PACKAGE_TOKEN IDENTIFIER IS_TOKEN
NEW_TOKEN expanded_n .gen_act_part. ;'
| PROCEDURE _ident__IS_
NEW_TOKEN expanded_n .gen_act_part. *;’
| FUNCTION_TOKEN designator IS_TOKEN
NEW_TOKEN expanded_n .gen_act_part. *;’ ;

Figure A-2 Example of Ada.y input file to Ayacc

2. Coding Style

The Automated Ada Physical Source Line Counter counts physical source lines
of code and is based upon the SEI framework on size. [SEI-B 92] Different coding styles
can and will result in different results. For example, lets compare a short example of the
same code, but different writing styles. (See Figure A-3) The total number of non-
comment, non-blank lines for version one would be two. However, the total for non-
comment, non-blank lines for the same exact code in version two results in a total of five.
The same code, only different coding styles. The use of a pretty printer on the Ada source
files prior to using the Automated Ada Physical Source Line Counter will ensure consistent

results for reports A through E.

61

Version One
procedure EXAMPLE_ONE is TEMP_INT : integer:= 0; begin
TEMP_INT := TEMP_INT + 1; end EXAMPLE_ONE;

Version Two
procedure EXAMPLE_TWO is
TEMP_INT : integer:= 0;
begin
TEMP_INT := TEMP_INT + 1,
end EXAMPLE_TWO;

Figure A-3 Example of two different coding styles
C. COMMAND LINE INVOCATION

To start the Automated Ada Physical Source Line Counter, the user must either be in
the directory that contains the tool or have the directory containing the Automated Ada
Physical Source Line Counter in a valid path statement. In addition, the user must be
running in an X-windows environment (operating motif for example) To invoke the tool,
any Unix program execution method may be employed, but input and output may not be
redirected.

D. USER INTERFACE

The user interface provides a window type access that is an easy-to-use method to
request one or several pre-defined reports or to create an individualized report. Each of the
supported attributes is contained in its own panel or screen. The user interface is made up
of eleven panels. The panels are made up of selection items, text items, text and integer
keyin items and labels. There are three types of selection items. The types are push-button,
checkboxes and radio buttons.Each of the panels have default settings for push-buttons,

radio-buttons, integer keyin items and checkboxes. Each default selection is highlighted.

62

To change or add too the default selection, the user must use the left mouse button. Several
of the figures are labeled one, two or three. The items with a one label means that those
items are radio buttons. Items with a label two are push-buttons. Finally, the items labeled

three are keyin items.

1. Push-buttons

The push-button is used to connect one panel to another. The push-buttons are
shaped like a rectangle. (See Figure A-4) The default push-button can be selected when the
return key is pressed while the cursor is in that panel.The push-buttons for each panel are
displayed along the bottom. Two of these push-buttons are common to each panel and will
be discussed separately from each particular panel. The first push-button is the “Quit”
button. The other push-button is the “Help” button. When the quit button is pressed, the quit
panel is displayed over the top of the current panel. The quit panel gives the user the choice
to quit the application, or to go back to the panel that they were just on. When the help
button is pressed, a help panel with information particular to that panel will be displayed.
When the user is finished with the help screen, the help screen will disappear and the panel

that initiated the help screen will again be the active screen.

Genezate Report

Figure A-4 Example of Push-buttons

63

2. Checkboxs
The checkboxes are used whenever the user has the choice to pick more than one
item. The checkboxes are shaped like a square. For example the user can pick just one

report, say A, an or the user can pick all six reports, A through F.

B A: Besic {7 D: Reuse Measurement
0 B: Project Tracking 0 E: Project Analysi {C+D)

1] C Project Analyss 0 F: Cosiom Repart

Figure A-5 Available Report Names

3. Radio-buttons
The radio buttons are used when the user can pick only one of the items in the
group. The radio-buttons are shaped like a diamond. At least one item will always be
picked. For example, if the user picks the value blank lines to be included in report F, then
the radio button for “Includes” will be highlighted. The button for “Excludes” will change
from highlighted to blank and vice versa.

4. Labels and Text/Integer Keyin items
Labels are used to identify the two types of keyin items. (See Figure A-6) The
labels are place holders and have no action associated with them. The text keyin items will
accept any input from the keyboard. However, if this information is the filelist, then the tool
will terminate if a correct file is not found. The integer keyin fields are used for the setting
of the precedence levels for report F. The precedence levels for reports A through E are

preset and can only be changed by going into the source code and manually changing the

values. For the integer keyin fields, TAE will check to ensure that the value is within the
prescribe range, which is from one through and including eight. However, TAE does not
check to see if duplicate values are entered.

Text

Filclat Lobels Keyin
Fields

Figure A-6 Text Keyin fields and labels

E. INTRODUCTORY PANEL

The first panel is an introduction panel. The introduction panel contains the name of
the tool, name of the author and three push-buttons displayed along the bottom. Beside the
quit and help push-buttons, the other push-button is the “Next screen” button. The next
screen button will make the introduction panel disappear, and bring up the second panel.

The next screen push-button is the default push-button for the introduction panel.

F. INPUT PANEL

The second panel is where the user will enter the mandatory information for the tool
to operate. The second panel contains four string keyin areas, a group of six checkboxes
and four push-buttons. The string keyin areas are for the report name, file list, requestor
name and output file name, respectively. The user enters the appropriate information by
placing the cursor over the window and type in the appropriate information. Six checkboxes

represent six different reports that can be generated by this tool. Any one or all of the

65

checkboxes may be selected. Report A is the default selection. In addition to the quit and
help push-button, the second panel also has displayed along the bottom a “Generate
Report” push-button and a “Specify Custom Report” push-button. When the generate
report button is pressed, the second panel will disappear and the generate report pane] will
appear on the screen. When the specify custom report push-button is selected, the second
panel disappears, and activates the third panel. The generate report push-button is the
default push-button for the second panel.

G. ATTRIBUTE PANELS

The third through the seventh panels contain the attributes of the SEI checklist, one
attribute per panel. (See Figure A-7) (See Figure A-8) (See Figure A-9) (See Figure A-
10) (See Figure A-11) There are five push-buttons on each of these panels. The first two
push-buttons are the quit and help buttons. Another push-button is the “Previous Screen”
push-button. When the previous screen button is pressed, the current panel disappears, and
activates the previous panel. The next push-button is labeled “Next Screen”. When pressed,
the current panel will disappear, activating the next pane! ‘n the sequence. The last push-
button is the generate report button. When this button is pressed it will make the current
panel disappear and activate the generate report panel. The generate report panel is the
default button. .

Along the top right comer in panels three through seven are two radio-buttons
displayed, one above the other. These radio-buttons allow the user to specify that in
addition to the individual totals, this attribute will be included in a multi-dimension array
at the end of the normal report format. When this choice is selected, all of the attributes
selected as such (must have at least two) will be displayed as two or three dimensional
arrays at the end of report F. When more than three attributes are selected, then all
combinations of N choose three will be displayed at the end of report F, where N will be
either four or five. The other major part of panels three through seven are the radio-buttons

that correspond to the values for each attribute. All of the radio-buttons are the same, either

Statement Type Order of Precedence $ Data Ammay
®

1. Executables: |_’1__] ¢ lnclni@ ¢ Exchudes
2. Nonexecutables:

3. Declarations Zl @ Inchudes ¢ Excludes
4. Compiler Directives z] & Includes <) Excludes
5. Comments

6. Ontheirown [] ¢ Inchudes 4 Excludes
7. With Source Code 5] ¢ Includes 4 Excludes
8. Banners/non blank [] O Inclodes ¢ Exciudes
9. Blank (empty) comments | [7] O Includes 4 Exchudes
10. Blankiines 8 ¢ Includes 4 Exchudes

®

Figure A-7 Statement Type Panel

67

¢ Definition

How Produced) Data Array

1, Programmed .m@ Excludes

2. Generated with source code generators & Includes) Excludes

3. Converted with automated translators & Includes) Excludes *
4. Copied or reused without change & Includes < Excludes

5. Modified ¢ Includes O Excludes

6. Removed O Includes 4 Excludes

..

s

Figure A-8 How Produced Panel

68

Q Data Array

1. New work: no prior existence @ Includes O Excludes
2. Priar work: taken or adapted from

3. Aprevous version, bulld or release @ Includes > Excludes
4. Commercial off the shelf software (COTS) @ Includes ¢ Excludes
S. Govermment, furnished software (GFS) @ Includes © Excludes
6. Another product @ Includes Excludes
7. Avendor supplied langnage support Library ¢ Includes ¢ Excludes
8. A vendar supplied operating system O Includes ¢ Excludes
9. Amodified or local langnage spt Library or OS @ Includes) Excludes
10. A commercial lihrary @ Includes) Excludes
11. A reuse library suftware designed for rense) & Includes) Excludes
12. Anather software component or library @ Includes © Excludes

=

] [] [promice] [

Rttt bbbt ddii)

Figure A-9 Origin Panel

69

4@ Definition
Usnge O Data Array
1. In or as part of the primary product @ Includes © Excludes
2. External to or in support of the primary ¢ Includes ¢ Excludes
product

Delivery Options @

@ Delivered as source

{ Delivered in compiled or executable form, but not as source

€ Under configuration control

< Not under configuration control

{ Don’tcare

@ Generate Report

Figure A-10 Usage and Delivery Options Panel

70

Development status

1. Estimated or Planned

2. Designed

3. Coded, under configuration control
4. Unit tests completed

3. Integrated into components

6. Test readiness review completed

7. Software (CSCI) tests completed

8. System tests completed

@ Definition
¢ Data Array

¢ Includes 4p Excludes
O Includes ¢ Excludes
¢ Includes ¢ Excludes
¢ Includes 4 Excludes
1) O Includes ¢ Excludes
O Includes 4 Excludes
& Includes ¢p Excludes

@ Includes Excludes

=
o] [] o] |

Next Screen

1

Figure A-11 Development Status Panel

the include button is highlighted or the exclude button is highlighted. Panel three also has
eight integer keyin windows. Each integer keyin window corresponds to one of the values

of the attribute statement type. TAE will ensure that the precedence entered is within the

71

range of one through eight. However, if the user does not ensure that each precedence value

is unique, the results for report F may not be accurate.
H. CLARIFICATIONS (GENERAL and Ada) PANELS

The eight and ninth panels are for the general and Ada specific clarifications panels
respectively. (See Figure A-12) (See Figure A-13) These two panels are similar to panel
three, the difference being the number of radio-buttons. There are a total of thirteen general
clarifications and six Ada specific clarifications. Each clarification is associated with one

of the values of the attribute statement type.

I. GENERATE REPORT PANEL

The tenth panel is the generate report panel. (See Figure A-14) This panel has two
push-buttons displayed along the bottom of the panel, they are labeled cancel and generate
report. The generate report is the default button. The cancel button will make the generate
report panel disappear. The user must then use the mouse to click on the icon of the
previous panel. In addition to the push-buttons, this panel displays a text message

explaining the different options available to the user

J. QUIT PANEL

The last panel is the quit panel. This panel also has two push-buttons displayed along
the bottom of the panel, they are labeled quit and cancel. (See Figure A-15) The quit button
is the default button. When the quit button is selected, the panel will disappear and the tool
will terminate. When the cancel button is selected, the quit panel disappears leaving the
previous panel as the active panel. In addition to the push-buttons, there is a text area that

displays the options to the user. This is provided in lieu of a help button.

72

w_

Qarifications (general) L\sted elements are
assigned to statement type @

1. Null, continues, and no-ops ﬁ—_] @ Includes O Excludes
2. Empty stmts (eg, "") 0 © Includes ¢ Excludes
3. Statements that instaniate generics] @ Includes © Excludes
4. Begin..end and (..} pairsused as

executable statements i ¢ Includes { Excludes
5. Begin..end and {...} pairs that

delimit (sub)program bodies & @ Includes O Excludes
6. Logjcal expressions used as test conditions o $ Includes ¢ Excludes
7. Expression evalutions used as

subprogram arguments o3 ¢ Includes ¢ Excludes
8. End symbols that terminate @

executable statements] @ Includes > Excludes
9. End symbols that terminate

declarations or (sub)program bodies &3 @ Includes O Excludes
10. Then, else, and otherwise symbols] @ Includes © Excludes
11. Elsif statements o 4 Includes © Excludes
12. Keywords like procedure division,

interface, and implementation] < Includes ¢ Excludes
13. Labels (branching destinations)

on lines by thenselves 03 @ Includes Excludes

@ Generate Report

Quit application Il Next Screen I

Figure A-12 Clarifications (general) Panel

73

Listed elements are
Quarifications (Ada specific) wssigned to statement type

1, End symbols that terminate @ @

declarations or (subprogram bodies 3 ¢ Inchudes ¢ Excludes
2. Block statements (eg, begin .. end) 1 ¢) Includes 4p Excludes
3. With and use clauses 3 @ Includes) Excludes
4. When (the keyword preceding

executable statements) 1 ¢ Includes) Exchudes
5. Exception (the keyword, used as a

frame header) 3 ¢ Includes ¢) Bxcludes
6. Pragmas 1 & Includes) Excludes

O B=

Figure A-13 Clarifications (Ada) Panel

74

You have pressed a "Generate Report”
‘button in one of the panels.

Press Generate Report to have your report
generated.

Press Cancel to return to the previous panel
display.

Figure A-14 Generate Report Panel

75

_Youhave pressed the " Quit” button in one of the
panels,

Press the “Quit" button to exit the tool.

Otherwise press the Cancel button to go back to
the previous panel.

Figure A-15 Quit Panel

76

APPENDIX B. SOURCE CODE

ADA.Y

Fotoken ‘&' V(P Y R

%token ‘< ‘=" >' ‘I

%token ARROW DOUBLE_DOT DOUBLE_STAR ASSIGNMENT INEQUALITY
%token GREATER_THAN_OR_EQUAL LESS_THAN_OR_EQUAL

%ioken LEFT_LABEL_BRACKET RIGHT_LABEL_BRACKET

%token BOX

%token ABORT_TOKEN ABS_TOKEN ACCEPT_TOKEN ACCESS_TOKEN
%token ALL_TOKEN AND_TOKEN ARRAY_TOKEN AT_TOKEN

%token BEGIN_TOKEN BODY_TOKEN
%token CASE_TOKEN CONSTANT_TOKEN
%token DECLARE_TOKEN DELAY_TOKEN DELTA_TOKEN DIGITS_TOKEN DO_TOKEN

%token ELSE_TOKEN ELSIF_TOKEN END_TOKEN ENTRY_TOKEN EXCEPTION_TOKEN
%token EXIT_TOKEN

%token FOR_TOKEN FUNCTION_TOKEN

%token GENERIC_TOKEN GOTO_TOKEN

%token IF_TOKEN IN_TOKEN IS_TOKEN

%token LIMITED_TOKEN LOOP_TOKEN

%token MOD_TOKEN

%token NEW_TOKEN NOT_TOKEN NULL_TOKEN

%token OF_TOKEN OR_TOKEN OTHERS_TOKEN OUT_TOKEN

%token PACKAGE_TOKEN PRAGMA_TOKEN PRIVATE_TOKEN PROCEDURE_TOKEN
%token RAISE_TOKEN RANGE_TOKEN RECORD_TOKEN REM_TOKEN
RENAMES_TOKEN

%token RETURN_TOKEN REVERSE_TOKEN

%token SELECT_TOKEN SEPARATE_TOKEN SUBTYPE_TOKEN

%token TASK_TOKEN TERMINATE_TOKEN THEN_TOKEN TYPE_TOKEN

77

%token USE_TOKEN
%token WHEN_TOKEN WHILE_TOKEN WITH_TOKEN
%token XOR_TOKEN

%token IDENTIFIER
%token INTEGER_LITERAL REAL_LITERAL

%token CHARACTER_LITERAL STRING_LITERAL

%token ERROR1 ERROR2 ERROR3 ERROR4 ERRORS ERROR6 ERROR7 ERRORS
%token ERROR9 ERROR10 ERROR11 ERROR12 ERROR13 ERROR14 ERROR15

%start compilation

{
subtype yystype is integer;

%%
set_exec_start : {FLAGS_ARRAY(STMT TYPE'val(0), 1) := true; };
set_exec_end : {FLAGS_ARRAY(STMT_TYPE'vak0), 2) :=true; };

set_dec_start : {FLACS_ARRAY(STMT_TYPE'val(l1), 1) := true;
put (“ dec start “); };

set_dec_end : {FLAGS_ARRAY(STMT_TYPE'val(1), 2) := true;
put (“ decend *); };

count_last_line : { if DECLEVEL > O then
DECREASE_DECLEVEL;
end if;
new_line;
GLOBAL.ADD_TO_ARRAY;
)

task_body_or_body_stub :
check_task_token_body_token_sim_n
check_task_body_or_body_stub

check_task_token_body_token_sim_n :
TASK_TOKEN
BODY_TOKEN
set_dec_start

78

_*

sim_n
IS_TOKEN
set_dec_end

check_task_body_or_body_stub
SEPARATE_TOKEN
[

.decl_part.

check_package_body_or_body_stub :
check_package body_stub_common
check_package_body_or_stub

check_package_body_stub_common :
PACKAGE_TOKEN
BODY_TOKEN
set_dec_start
sim_n
IS_TOKEN
set_dec_end ;

check_package _body_or_stub
SEPARATE_TOKEN
|

.decl_part.

-- Clarifications general

--line 1
check_null_start : { if COUNT_CLARIFICATION
(GLOBAL .RECORD_FLAGS_F.PANEL10.LINE_1) then
FLAGS_ARRAY (STMT_TYPE’val (0), 1) := TRUE;
put (*“ exec start”™);
else
null;
endif;) ;

check_null_end : {if COUNT_CLARIFICATION
(GLOBAL . RECORD_FLAGS_F.PANEL10.LINE_1) then
FLAGS_ARRAY (STMT_TYPE’val (0), 2) := TRUE,;
put (“ exec end”);
else
null;
endif; } ;

79

-- line 2
-- Not applicable to Ada

--line 3

-- expanded in-line

-- check_gen_inst_start
-- check_gen_inst_end

- line 4
check_begin..end_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_4) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (* exec start ‘>
else
null;
endif; } ;

check_begin..end_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_4) then
FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
put (*“ exec end “);
else
null;
endif; } ;

check_end_block_stmt :
END_TOKEN check_begin..end_end ;

--line 5
check_begin..end_delinate_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10Q.LINE_5) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (* exec start “);
else
null;
endif:) ;

check_begin..end_delinate_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_S) then
FLAGS_ARRAY (STMT_TYPE val (0), 2) := TRUE;
put (“ exec end “);
else
null;
endif; } ;

check_begin_stmt :
check_begin..end_delinate_start BEGIN_TOKEN check_begin..end_delinate_end ;

-- line 6
-- Not specific 1o Ada

80

--line 7
-- Are considered part of Executable statement

--line 8
check_end_exec_statement_start :
{ if COUNT_CLARIFICATION (GLOBAL . RECORD_FLAGS_F.PANEL10.LINE_8) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (" exec start “);
else
null;
endif; } ;

check_end_exec_statement_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_8) then
FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
put (“ exec end “);
else
null;
endif; } ;

CHECK_END_EXEC_STMT :
END_TOKEN check_end_exec_statement_end ;

--line 9
check_end_declarations_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_9) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
put (** dec start *);
else
null;
endif; } ;

check_end_declarations_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_9) then
FLAGS_ARRAY (STMT_TYPE val (1), 2) := TRUE;
put (“ dec end *);
else
null;
endif; } ;

check_end_dec :
END_TOKEN
check_end_declarations_end

-- line 10
-- check for else, then, others on line by themselves
-- Is now tested for inside of ada_lex.]

-- line 11
-- check for elsif on line by itself

81

_ﬁ

-- is now tested for inside of ada_lex.1

-- line 12
-- Does not apply to Ada

-- line 13
check_label_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_FPANEL!0.LINE_13) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (** exec start “);
else
null;
endif;) ;

check_label_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_13) then
FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
put (* exec end *);
else
null;
endif;) ;

-- Ada specific clarifications

--line 1
-- checkec in line 9 of general clarifications

-- line 2
-- checked in line 4 of general clarifications

-- line 3
check_with_and_use_start :
{ if COUNT_CLARIFICATION (GLOBAL . RECORD_FLAGS_F.PANEL11.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
put (“ dec start *);
else
null;
endif; } ;

check_with_and_use_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_3) then
FLAGS_ARRAY (STMT_TYPE’val (1), 2) := TRUE;
put (“ dec end *);
else
null;
endif;) ;

-- line 4

check_when_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F PANEL11.LINE_4) then

32

-

FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (* exec start “);

else
null;

endif; } ;

check_when_end :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_4) then
FLAGS_ARRAY (STMT_TYPE'val (0), 2) := TRUE;
put (** exec end *°);
else
null;
end if; } ;

check_when
check_when_start WHEN_TOKEN check_when_end ;

--line §
-- working
check_exception_keyword_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_5) then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
put (* exec start *);
else
null;
endif; } ;

check_exception_keyword_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_5) then
FLAGS_ARRAY (STMT_TYPE’val (0), 2) := TRUE;
put (* exec end “);
else
null;
endif; } ;

--line 6
check_pragma_start :
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_6) then
FLAGS_ARRAY (STMT_TYPE'val (2), 1) := TRUE;
put (* pragma start *);
else
null;
endif;) ;

check_pragma_end
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL11.LINE_6) then
FLAGS_ARRAY (STMT_TYPE'val (2), 2) := TRUE;
put (“ pragma end “);
else
null;

83

endif; } ;

-- Ayacc grammer rules follow

prag: check_pragma_start
PRAGMA_TOKEN IDENTIFIER .arg_ascs *;'
check_pragma_end ;

--prag: PRAGMA_TOKEN IDENTIFIER .arg_ascs ;" ;

arg_asc
expr
IDENTIFIER ARROW expr ;

.. ww% Added *** L
numeric_literal

: REAL_LITERAL

| INTEGER_LITERAL

13

basic_d :

object_d set_dec_end
Iset_dec_start ty_ d set_dec_end
| subty_d set_dec_end
Isubprg_d
| pkg_d
hask_d set_dec_end
| gen_d set_dec_end
lexcptn_d set_dec_end
| gen_inst
| renaming_d set_dec_end
! number_d set_dec_end
|

error ;" ;
object_d :
set_dec_start idents *:’ subty_ind ._ASN_expr. *;’
| set_dec_start idents ‘:° CONSTANT_TOKEN subty_ind ._ASN_expr. ;'
| set_dec_start idents ‘.’ c_arr_def ._ASN_expr. *;’

| set_dec_start idents :" CONSTANT_TOKEN c_arr_def ._ASN_expr. "." :

number_d :

84

set_dec_start idents ‘> CONSTANT_TOKEN ASSIGNMENT expr ‘;' ;

idents ; IDENTIFIER ...ident..;

ty d:
full ty d
lincomplete_ty_d

lpriv_ty_d ;

full_ty d :
TYPE_TOKEN IDENTIFIER IS_TOKEN ty_def *;’
[
TYPE_TOKEN IDENTIFIER discr_part IS_TOKEN ty_def “;";

ty_def :
enum_ty_defl intcger_ty def
ireal_ty_defl array_ty_def
lrec_ty_def | access_ty_def
Iderived_ty_def ;

subty_d :
set_dec_start SUBTYPE_TOKEN IDENTIFIER IS_TOKEN subty_ind *;" ;

subty_ind :ty_mk .constrt, ;

ty_mk : expanded_n;

constrt :

mgc
ifitg_point_c | fixed_point_c
laggr ;

derived_ty_def : NEW_TOKEN subty_ind ;

mg_c : RANGE_TOKENmg ;

85

mg :
name
Isim_expr DOUBLE_DOT sim_expr;

enum_ty_def :
(enum_lit_spec
..enum_lit_spec.. *)’ ;

enum_lit_spec : enum_lit;

enum_lit : IDENTIFIER | CHARACTER_LITERAL ;

integer_ty_def: mg c;

real_ty_def
fltg_point_c | fixed_point_c ;

fitg_point_c :
fltg_accuracy_def .mg_c. ;

fltg_accuracy_def :
DIGITS_TOKEN sim_expr ;

fixed_point_c:
fixed_accuracy_def .mg_c.;

fixed_accuracy_def :
DELTA_TOKEN sim_expr ;

amray_ty_def
uncnstrnd_array_defl ¢_amr_def ;

uncnstrnd_array_def:

86

ARRAY_TOKEN ‘(* idx_subty_def ...idx_subty_def.. ‘)’ OF_TOKEN
subty_ind ;

c_arr_def
ARRAY_TOKEN idx_c OF_TOKEN subty_ind ;

idx_subty_def : name RANGE_TOKEN BOX;
idx_c : ‘(‘ dscr_mg ..dscr_mg.. ‘) ;

dscr_mng:
mg
Iname mg_c;

rec_ty_def :
RECORD_TOKEN
cmpons
CHECK_END_DEC RECORD_TOKEN ;

--rec_ty_def:
--RECORD_TOKEN

-- cmpons

--END_TOKEN RECORD_TOKEN ;

cmpons:
..prag.. .cmpon_d.. cmpon_d ..prag..

l..prag.. .cmpon_d.. variant_part ..prag..
1 .prag..NULL_TOKEN °*;’ .prag.. ;

cmpon_d : set_dec_start
idents ‘;* cmpon_subty_def ._ASN_expr. ‘;” set_dec_end ;

cmpon_subty_def : subty_ind;
discr_part :

‘(* discr_spec ...discr_spec.. ‘)’ ;
discr_spec :

87

idents ‘" ty_mk ._ASN_expr. ;

variant_part :
CASE_TOKEN sim_n IS_TOKEN
.prag.. variant ..variant..
CHECK_END_DEC CASE_TOKEN *;’;

--variant_part :

--CASE_TOKEN sim_n IS_TOKEN

-- ..prag.. variant ..variant..

-- END_TOKEN CASE_TOKEN *;’;

variant :
CHECK_WHEN choice ..or_choice.. ARROW
cmpons ;

--variant :
--WHEN_TOKEN choice ..or_choice.. ARROW
-~ Cmpons ;

choice : sim_expr
| name mg_c
I sim_expr DOUBLE_DOT sim_expr
| OTHERS_TOKEN
| error

.
’

access_ty_def: ACCESS_TOKEN subty_ind ;

incomplete_ty_d :
TYPE_TOKEN IDENTIFIER *;’
|
TYPE_TOKEN IDENTIFIER discr_part *;” ;

decl_part :
.Jbasic_decl_item.,
| .basic_decl_item.. body ..Jater_decl_item.. ;

basic_decl_item :

basic_d
rep_cl | use_cl;

88

later_decl_item ; body
{subprg_d set_dec_end
| pkg_d set_dec_end
ltask_dset_dec_end
1 gen_d set_dec_end
luse_cl
| gen_inst ;

body : proper_body | body_stub ;

proper_body :
subprg_body | pkg body ! task_body ;

name : sim_n
| CHARACTER_LITERAL ! op_symbol
lidxed_cmpon
iselected_cmpon ! attribute ;

sim_n :IDENTIFIER ;

prefix: name ;

idxed_cmpon :
prefix aggr ;

selected_cmpon : prefix *.” selector ;

selector : sim_n
I CHARACTER_LITERAL | op_symbol | ALL_TOKEN

attribute : prefix **’ attribute_designator ;

attribute_designator :
sim_n
IDIGITS_TOKEN
IDELTA_TOKEN
IRANGE_TOKEN ;

aggr :
‘(‘ cmpon_asc ...cmpon_asc..)’ ;

89

cmpon_asc
xpr
ichoice ..or_choice.. ARROW expr
Isim_expr DOUBLE_DOT sim_expr
inamemg ¢

expr :
rel ., AND__rel.. | rel. AND__THEN_ rel..
irel. OR__rel.. ! rel.. OR__ELSE__rel..
irel. XOR__rel.. ;

rel :
sim_expr .relal_op__sim_expr.
Isim_expr.NOT.IN__mg_or_sim_expr.NOT.IN__ty_mk ;

sim_expr :
.unary_add_op.term..binary_add_op__term.. ;

term : factor.mult_op__factor.. ;

factor: pri._EXP__ pri. JABS_TOKEN pri INOT_TOKEN pri ;

pri :
numeric_literal | NULL_TOKEN
lallocator | qualified_expr
Iname

laggr ;

relal_op : ‘=’
| INEQUALITY
| ‘<
| LESS_THAN_OR_EQUAL
(I
| GREATER_THAN_OR_EQUAL ;

binary_add_op : ‘+’ | *-7 | ‘&’ ;

unary_add_op : ‘+’ | ‘- ;

mult_op : ‘** | */' | MOD_TOKEN | REM_TOKEN ;

qualified_expr:
ty_mkaggr_or_ty_mkPexprP_;

allocator :
NEW_TOKEN ty_mk
INEW_TOKEN ty_mk aggr
{ NEW_TOKEN ty_mk “*’ aggr ;

seq_of_stmts: ..prag.. stmt ..stmt.. { null; } -- Because of bug

stmt
.Jabel.. sim_stmt
| .label.. compound_stmt
| emor °;;

--stmt :

--..]label.. sim_stmt

-- | .label. compound_stmt
- | emor ' ;

sim_stmt :null_stmt

Iset_exec_start assignment_stmt set_exec_end
| set_exec_start exit_stmt set_exec_end
Iset_exec_star* return_stmt set_exec_end

| set_exec_start goto_stmt set_exec_end
Iset_exec_start delay_stmt set_exec_end

| set_exec_start abort_stmt set_exec_end
Iset_exec_start raise_stmt set_exec_end

I set_exec_start code_stmt set_exec_end
I set_exec_start name *;’ set_exec_end ;

--sim_stmt :null_stmt

-- lassignment_stmt | exit_stmt
-- lreturn_stmt | goto_stmt
-- Idelay_stmt | abort_stmt
-- lraise_stmt | code_stmt

-- | name ‘; ;

91

compound_stmt :
set_exec_start if_stmt
| set_exec_start case_stmt
Iset_exec_start loop_stmt
| set_exec_start block_stmt
Iset_exec_start accept_stmt set_exec_end
Iset_exec_start select_stmt set_exec_end ;

--compound_stmt :
--if_stmt

-- | case_stmt
-- floop_stmt

-- | block_stmt
-- laccept_stmt
-- lIselect_stmt ;

label :
check_label_start
LEFT LABEL_BRACKET sim_n RIGHT_LABEL_BRACKET
check_label_end

*

null_stmt : check_null_start NULL_TOKEN *;’ check_null_end ;
--null_stmt : NULL_TOKEN *;’ ;

assignment_stmt : name ASSIGNMENT expr *;’ ;

if_stmt :
IF_TOKEN cond THEN_TOKEN
seq_of_stmts
.ELSIF__cond__THEN__seq of_stmts..
ELSE__seq of_stmts.
CHECK_END_EXEC_STMT IF_TOKEN *;’;

--if_stmt :

--IF_TOKEN cond THEN_TOKEN

-- seq of_stmts

--.ELSIF__cond__ THEN__seq of_stmits..
--ELSE__seq_of_stmts.

- END_TOKEN IF_TOKEN *;’;

92

cond : expr;

case_stmt
CASE_TOKEN expr IS_TOKEN
case_stmt_alt..case_stmt_alt..
CHECK_END_EXEC_STMT CASE_TOKEN ;" ;

--case_stmt:

--CASE_TOKEN expr IS_TOKEN

-- case_stmt_alt..case_stmt_alt.,

- END_TOKEN CASE_TOKEN *;’;

case_stmt_alt :
CHECK_WHEN choice ..or_choice.. ARROW
seq_of_stmts ;

--case_stmt_alt :
--WHEN_TOKEN choice ..or_choice.. ARROW
-- seq of_stmts ;

loop_stmt:
sim_nC,
dteration_scheme. LOOP_TOKEN
seq_of_stmts
CHECK_END_EXEC_STMT LOOP_TOKEN .sim_n. *; ;

--loop_stmt:

--.sim_nC,

-- .iteration_scheme. LOOP_TOKEN

-- seq _of_stmts

-~ END_TOKEN LOOP_TOKEN .sim_n. *;";

iteration_scheme
: WHILE_TOKEN cond
| WHILE_TOKEN error
I FOR_TOKEN loop_prm_spec
| FOR_TOKEN error

lIoop_prm_spec :
IDENTIFIER IN_TOKEN REVERSE. dscr_mg ;

93

block_stmt :
sim_nC.
.DECLARE__dec]_part.
check_begin..end_start
BEGIN_TOKEN
check_begin..end_start
seq_of_stmts
EXCEPTION__excptn_handler..excptn_handler...
check_end_block_stmt .sim_n. *;’ ;

--block_stmt :

--.sim_nC.

—~ .DECLARE__ decl_part.

-- BEGIN_TOKEN

- seq_of_stmts

-- EXCEPTION__excptn_handler..excptn_handler...
- END_TOKEN .sim_n. ;" ;

exit_stmt:
EXIT_TOKEN .expanded_n. WHEN__cond. *;" ;

return_stmt : RETURN_TOKEN .expr. *;’ ;

goto_stmt : GOTO_TOKEN expanded_n *;’ ;

subprg_d : subprg_spec ‘;’ ;

procedure_ident :
set_dec_start
PROCEDURE_TOKEN IDENTIFIER ;

function_desig :
set_dec_start
FUNCTION_TOKEN designator

--function_desig :

--set_dec_start
--FUNCTION_TOKEN designator set_dec_end ;

94

subprg_spec :
procedure_ident .fml_pant. set_dec_end
I function_desig .fml_part. RETURN_TOKEN ty_mk set_dec_end ;

designator : IDENTIFIER | op_symbol ;
op_symbol : STRING_LITERAL ;

fml_part :
‘(* prm_spec .._.prm_spec..)’ ;

prm_spec :
idents ‘.’ mode ty_mk ._ASN_expr. ;

mode : .IN. | IN_TOKEN OUT_TOKEN | OUT_TOKEN ;

subprg_body :
subprg_spec IS_TOKEN
.decl_part.
check_begin..end_delinate_start
BEGIN_TOKEN
check_begin..end_delinate_end
seq_of_stmts
EXCEPTION__excptn_handler..excptn_handler...
check_begin..end_delinate_start
END_TOKEN .designator. ‘;’
check_begin..end_delinate_end

»

--subprg_body :

--subprg_spec IS_TOKEN

-- .decl_part.

--BEGIN_TOKEN

-- seq of_stmts

-- EXCEPTION__excptn_handler..excptn_handler...
-- END_TOKEN .designator. *;’ ;

pkg_d : pkg_spec ;' ;
package_ident

PACKAGE_TOKEN
IDENTIFIER

95

IS_TOKEN

set_dec_start_end :

{ FLAGS_ARRAY(STMT_TYPE'val(1), 1) := true;
put (* dec start pkg *);
FLAGS_ARRAY(STMT_TYPE val(1), 2) := true;
put (“ dec end pkg “);

}

--check_pkg_declaration :

- package_ident

-- set_dec_start_end
- IS_TOKEN

-

check_pkg_declaration :
PACKAGE_TOKEN
IDENTIFIER
set_dec_start
IS_TOKEN
set_dec_end

pkg_spec :
check_pkg_declaration

..basic_decl_item..

PRIVATE. basic_decl_item...
check_end_declarations_start
check_end_dec

.sim_n.

.
?

--pkg_spec :

- PACKAGE_TOKEN
--IDENTIFIER IS_TOKEN

-- ..basic_decl_item..

-- PRIVATE. basic_decl_item...
--END_TOKEN .sim_n. ;

pkg_body :
check_package_body_or_body_stub
BEGIN__seq of_stmts. EXCEPTION__excptn_handler..excptn_handler...
check_begin..end_delinate_start
END_TOKEN .sim_n. *;’
check_begin..end_delinate_end

’

96

--pkg_body :

--PACKAGE_TOKEN BODY_TOKEN sim_n IS_TOKEN

-- .decl_part.

-- BEGIN__seq_of_stmts EXCEPTION_ excptn_handler..excptn_handler...
--END_TOKEN .sim_n. *;’ ;

priv_ty d :
TYPE_TOKEN IDENTIFIER IS_TOKEN LIMITED. PRIVATE_TOKEN *:’
{
TYPE_TOKEN IDENTIFIER discr_part IS_TOKEN .LIMITED. PRIVATE_TOKEN *;’ ;

use_cl : check_with_and_use_start
USE_TOKEN expanded_n ...expanded_n.. *;’
check_with_and_use_end ;

--renaming_d :

- set_dec_startidents ‘" ty_mk RENAMES_TOKEN name *;’

-- Iset_dec_start idents . EXCEPTION_TOKEN RENAMES_TOKEN expanded_n “;’
-- | package_ident RENAMES_TOKEN expanded_n *;’

-- | subprg_spec RENAMES_TOKEN name ‘;’ ;

renaming d :
set_dec_startidents ‘" ty mk RENAMES_TOKEN name *“;’
| set_dec_start idents ;> EXCEPTION_TOKEN RENAMES_TOKEN expanded_n ;’
| PACKAGE_TOKEN IDENTIFIER = RENAMES_TOKEN expanded_n *;’
| subprg_spec RENAMES_TOKEN name ;" ;

task_d : task_spec‘;’ ;

task_spec :
TASK_TOKEN set_dec_start . TYPE. IDENTIFIER
IS..ent_d_.rep cl_ENDsim_n. ;

task_body :
task_body_or_body_stub
CHECK_BEGIN_STMT seq of_stmts
EXCEPTION__excptn_handler..excptn_handler...
check_begin..end_delinate_start
END_TOKEN .sim_n. *;’
check_begin..end_delinate_end :

97

--task_body :

--TASK_TOKEN BODY_TOKEN sim_n IS_TOKEN
- decl_part.

--BEGIN_TOKEN

-- seq of_stmts

-- EXCEPTION__excptn_handler..excptn_handler...
- END_TOKEN .sim_n. *;’ ;

ent.d :
set_dec_start ENTRY_TOKEN IDENTIFIER .fml_part. *;’ set_dec_end
| set_dec_start ENTRY_TOKEN IDENTIFIER ‘(‘ dscr_rng ‘)’ .fml_part. *;’
set_dec_end ;

ent_call_stmt :
..prag.. name ;’;

accept_stmt :
ACCEPT_TOKEN sim_n .Pent_idx_P..fml_part.
.DO__seq_of_stmts__ END.sim_n.. *;’ ;

ent_idx expr ;

delay_stmt : DELAY_TOKEN sim_expr *;" ;

select_stmt :selec_wait
Icondal_ent_calll timed_ent_call ;

selec_wait:
SELECT_TOKEN
select_alt
~OR__select_alt..
ELSE__seq of_stmts.
END_TOKEN SELECT_TOKEN *;’:

--selec_wait:

--SELECT_TOKEN

-- select_alt

- ..OR__select_alt..

-- ELSE_ seq of_stmts.

- END_TOKEN SELECT_TOKEN *;’;

98

select_alt :
WHEN__condARROW .selec_wait_alt ;

selec_wait_alt : accept_alt
ldelay_alt | terminate_alt ;

accept_alt :
accept_stmt.seq_of_stmts. ;

delay_alt :
delay_stmt.seq_of_stmts. ;

terminate_alt : TERM_stmt ;

condal_ent_call:
SELECT_TOKEN
ent_call_stmt
.seq_of_stmts.
ELSE_TOKEN
seq_of_stmts
END_TOKEN SELECT _TOKEN *;’;

--condal_ent_call:

--SELECT_TOKEN

-- ent_call_stmt

-- .seq_of_stmts.

--ELSE_TOKEN

-- seq_of_stmts

- END_TOKEN SELECT_TOKEN *;’;

timed_ent_call :
SELECT_TOKEN
ent_call_stmt
.seq_of_stmts.
OR_TOKEN
delay_alt
END_TOKEN SELECT_TOKEN *;’ ;

--timed_ent_call :
--SELECT_TOKEN

99

- ent_call_stmt

-~ .seq_of_stmts.

--OR_TOKEN

-- delay_alt

- END_TOKEN SELECT_TOKEN *;’;

abort_stmt : ABORT_TOKEN name ...name.. ;" ;

compilation :..compilation_unit.. count_last_line ;

--compilation :..compilation_unit.. ;

compilation_unit :
context_cl library_unit
| context_cl secondary_unit ;

library_unit :
subprg_dl pkg d
| gen_dl gen_inst
Isubprg_body ;

secondary_unit:
library_unit_body | subunit;

library_unit_body :
pkg_body_or_subprg_body ;

context_cl :..with_cl..use_cl...;

with_cl : check_with_and_use_start
WITH_TOKEN sim_n ...sim_n.. *;’
check_with_and_use_end ;

--with_cl : set_dec_start WITH_TOKEN sim_n ...sim_n.. ;" set_dec_end ;
body_stub :
subprg_spec IS_TOKEN SEPARATE_TOKEN *;’

I check_package_body_or_body_stub set_dec_end °*;
I task_body_or_body_stub set_dec_end °*;’

100

--body_stub :

subprg_spec IS_TOKEN SEPARATE_TOKEN *;’

-~ | PACKAGE_TOKEN BODY_TOKEN sim_n IS_TOKEN SEPARATE_TOKEN *:’
- | TASK_TOKEN BODY_TOKEN sim_n IS_TOKEN SEPARATE_TOKEN *;’

subunit : SEPARATE_TOKEN ‘(‘ expanded_n *)’ proper_body ;

excpmn_d : set_dec_start idents *:* EXCEPTION_TOKEN °:’:

excptn_handler:
CHECK_WHEN excptn_choice ..or_excptn_choice.. ARROW
seq_of_stmts ;

--excptn_handler:
-~-WHEN_TOKEN excptn_choice ..or_excptn_choice.. ARROW
-~ seq of_stmts ;

excptn_choice : expanded_n IOTHERS_TOKEN;

raise_stmt : RAISE_TOKEN .expanded_n. *;" ;

gen_d : gen_spec '}’ ;

gen_spec :
gen_fml_part subprg_spec
Igen_fml_part pkg_spec ;

--gen_spec :
--gen_fml_part subprg_spec
-~ lgen_fml_part pkg spec ;

gen_fml_part :set_dec_start GENERIC_TOKEN set_dec_end .gen_prm_d.. ;

--gen_fml_part : GENERIC_TOKEN ..gen_prm_d.. ;

101

gen_prm_d
set_dec_start
idents ** .IN.OUT.. ty_mk ._ASN_expr. *;’
set_dec_end
| set_dec_start
TYPE_TOKEN IDENTIFIER IS_TOKEN gen_ty_def *;’
set_dec_end
Iset_dec_start
priv_ty_d
set_dec_end
I WITH_TOKEN subprg_spec .IS_BOX_. *;’

--gen_pm_d :

-idents *:* IN.OUT.. ty_mk ._ASN_expr. *;’

-- | TYPE_TOKEN IDENTIFIER IS_TOKEN gen_ty_def *;’
- lpriv_ty_d

-~ | WITH_TOKEN subprg_spec .IS_BOX_. ‘)"

gen_ty_def :
‘“ BOX)’
| RANGE_TOKEN BOX
| DIGITS_TOKEN BOX
| DELTA_TOKEN BOX
| array_ty_def
| access_ty_def

.
’

check_pkg_inst_declaration :
PACKAGE_TOKEN
IDENTIFIER
set_dec_start
IS_TOKEN
NEW_TOKEN

gen_inst :
check_pkg_inst_declaration
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
put (** dec start “);
else
null;
end if: }
expanded_n
.gen_act_part.

»

102

{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 2) := TRUE;
put (“ dec end “);
else
null;
end if; }
IPROCEDURE__ ident__IS_
{ if COUNT_CLARIFICATION (GLOBAL .RECORD_FLAGS_F PANEL10.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
put (“ dec start *°);
else
null;
end if; }
NEW_TOKEN expanded_n .gen_act_part. *;’
{ if COUNT_CLARIFICATION (GLOBAL RECORD_FLAGS_F.PANEL10LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 2) := TRUE;
put (* dec end *);
else
null;
end if; }
ifunction_desig IS_TOKEN
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
put (“ dec start **);
else
null;
end if; }
NEW_TOKEN expanded_n .gen_act_part, *;’
{ if COUNT_CLARIFICATION (GLOBAL.RECORD_FLAGS_F.PANEL10.LINE_3) then
FLAGS_ARRAY (STMT_TYPE'val (1), 2) := TRUE;
put (“ dec end “);
else
null;
end if; }

gen_act_part :
set_dec_start
‘(* gen_asc ...gen_asc.. ‘)’
set_dec_end

.
’

--gen_act_part :
- ‘(“ gen_asc ...gen_asc.. ‘)’ :

gen_asc
.gen_fml_prmARROW.gen_act_prm ;

103

gen_fml_pmm :
sim_n | op_symbol ;

gen_act_prm :
expr_or_name_or_subprg_n_or_ent_n_or_ty_mk

.

rep_cl :
ty_rep_cl | address_cl ;

ty_rep._cl : length_cl
lenum_rep_cl
trec_rep_cl ;

length_cl : FOR_TOKEN attribute USE_TOKEN sim_expr *;’ ;

enum_rep_cl :
FOR__ty_sim_n__ USE_ aggr*:’;

rec_rep_cl:
FOR__ty_sim_n_ USE_
RECORD_TOKEN .algt_cl.
..cmpon_cl..
CHECK_END_DEC RECORD_TOKEN *;’ ;

--rec_rep_cl:

--FOR__ty_sim_n__USE_

-- RECORD_TOKEN .algt_cl.

- cmpon_cl..

-- END_TOKEN RECORD_TOKEN ;" ;

algt_cl : AT_TOKEN MOD_TOKEN sim_expr *;" ;

cmpon_cl :
name AT_TOKEN sim_expr RANGE_TOKEN g *;’ ;

address_cl : FOR_TOKEN sim_n USE_TOKEN AT_TOKEN sim_expr *; ;

code_stmt : ty_mk_rec_aggr"*;’ ;

104

.-prag.. :
|..prag.. prag ;

.Arg_ascs:
I 4(‘ arg-ascs .)’ :

arg_ascs:
arg_asc
| arg ascs‘,’ arg_asc;

._ASN_expr.:
IASSIGNMENT expr ;

..Jident.. :
)l ..ident.. ‘,’ IDENTIFIER ;

constrt.
lconstrt ;

expanded_n :
IDENTIFIER
| expanded_n ‘.’ IDENTIFIER ;

...enum_lit_spec.. :
| ..enum_lit_spec..*,
enum_lit_spec ;

mg.c. :
img_c;

.idx_subty_def..
| ..idx_subty_def.. *,” idx_subty_def ;

.dscr_mg..:
I ..dscr_mng..‘," dscr_mg ;

.cmpon_d.. :

| .cmpon_d..cmpon_d.prag.. ;

...discr_spec..:
| ..discr_spec.. ‘;’ discr_spec ;

.varant.. :

105

l..variant.. variant ;

..or_choice.. :
I ..or_choice.. ‘I' choice ;

..basic_decl_item..
|..basic_decl_item.. basic_decl_item ..prag.. ;

Jater_decl_item..
| .later_decl_item.. later_decl_item ..prag.. ;

...CINpon_asc..
I ..cmpon_asc.. ‘,” cmpon_asc ;

rel..AND_ rel. :
rel AND_TOKEN rel
frel.. AND__rel.. AND_TOKEN rel ;

rel.OR__rel..:
rel OR_TOKEN rel
irel..OR __rel.. OR_TOKEN rel ;

rel. XOR__rel.. :
rel
I.XOR__rel.. ;

.XOR__rel.. :
rel XOR_TOKEN rel
I.XOR__rel.. XOR_TOKEN rel;

rel . AND__ THEN_ rel.. :
rel AND_TOKEN THEN_TOKEN rel
Irel.. AND__THEN__rel.. AND_TOKEN THEN_TOKEN rel ;

rel.OR__ELSE_ rel..:
rel OR_TOKEN ELSE_TOKEN rel
irel..OR__ELSE_ rel.. OR_TOKEN ELSE_TOKEN rel ;

106

relal_op__sim_expr. :
trelal_op sim_expr ;

sim_expr.NOT.IN__mg_or_sim_expr.NOT.IN__ty_mk:
sim_expr NOT. IN_TOKEN mg ;

NOT. :
INOT_TOKEN ;

Aunary_add_op.term..binary_add_op__term.. :
term
lunary_add_op term
Lunary_add_op.term..binary_add_op__term..
binary_add_op term ;

factor..mult_op__factor..:
factor
Ifactor..mult_op__factor.. mult_op factor ;

._EXP___pri. :
IDOUBLE_STAR pri ;

ty_mkaggr_or_ty_mkPexprP_ :
prefix *’’ aggr;

.stmt..

|..stmt.. stmt ..prag.. ;

.Jabel.. :
|..label.. label ;

.ELSIF__cond__THEN__ seq of_stmts.. :
I.ELSIF__cond__THEN__seq_of_stmts..
ELSIF_TOKEN cond THEN_TOKEN
seq_of_stmts ;

ELSE__seq of_stmts.:
[ELSE_TOKEN
seq_of_stmts ;
case_stmt_alt..case_stmt_alt.. :
..prag..

107

case_stmt_alt
.case_stmt_alt.. ;

..case_stmt_alt...
l..case_stmt_alt.. case_stmt_alt ;

sim_nC.:
I sim_n*’;

sim_n. :
Isim_n ;

.iteration_scheme. :
literation_scheme

REVERSE. :
[REVERSE_TOKEN ;

DECLARE__dec] part. :
Iset_exec_start DECLARE_TOKEN

dec]_partset_exec_end;

EXCEPTION__excptn_handler..excpm_handler... :
icheck_exception_keyword_start
EXCEPTION_TOKEN
check_exception_keyword_end
..prag.. excptn_handlers set_exec_end ;

--EXCEPTION__excptn_handler..excptn_handler... -
-- [EXCEPTION_TOKEN ..prag.. excptn_handlers set_exec_end ;

excptn_handlers:
excptn_handler
lexcptn_handiers excptn_handler ;

.expanded_n. :
lexpanded_n ;

WHEN__cond. :
ICHECK_WHEN cond;

--WHEN__cond. :
-- TWHEN_TOKEN cond;

108

£XPr.:
lexpr ;

fmli_part. :
ifm]_part ;

«_Jprm_spec.. :
| .._.prm_spec.. ;" prm_spec ;

JN.
{IN_TOKEN ;

(decl_part. : decl_part;

.designator. :
| designator ;

JPRIVATE. basic_decl_item... :
Iset_dec_start
PRIVATE_TOKEN
set_dec_end
.Jhasic_decl_item.. ;

-- PRIVATE..basic_decl_item... :
-- } PRIVATE_TOKEN
-- .basic_decl_item.. ;

BEGIN__seq_of_stmts. EXCEPTION__excptn_handler..excptn_handler...

icheck_begin_stmt
seq_of_stmts
EXCEPTION__excptn_handler..excptn_handler... ;

--.BEGIN__seq_of_stmts EXCEPTION__excptn_handler..excptn_handler...

-- | BEGIN_TOKEN
- seq_of_stmts
-- EXCEPTION__excptn_handler..excptn_handler... ;

LIMITED. :
ILIMITED_TOKEN ;

109

...expanded_n.. :
| ..expanded_n..‘,’ expanded_n ;

.TYPE.
ITYPE_TOKEN ;

JS..ent_d_..rep_cl_END.sim_n. :
IIS_TOKEN
.ent_d..
.rep_cl.
END_TOKEN sim_n. ;

<ent_d.. :

..prag..
l..ent_d.. ent_d ..prag..;

.rep_cl. :
l.rep_cl.. rep_cl ..prag..;

Pent_idx_P..fm]_part. :

.fml_part.
I *(*ent_idx ‘)’ fml_part. ;

DO__seq_of_stmts__END.sim_n.. :
IDO_TOKEN
seq_of_stmts
END_TOKEN .sim_n. ;

--DO__seq of_stmts__END.sim_n.. :
-- IDO_TOKEN

-- seq_of_stmts

--END_TOKEN .sim_n. ;

OR__select_alt.. :
I..OR__select_alt.. OR_TOKEN select_alt;

WHEN__condARROW .selec_wait_alt :
selec_wait_alt
ICHECK_WHEN cond ARROW selec_wait_alt ;

---WHEN__condARROW selec_wait_alt :
--selec_wait_alt
-- IWHEN_TOKEN cond ARROW selec_wait_alt ;

110

accept_stmt.seq_of_stmts. :
..prag.. accept_stmt .seq_of_stmts. ;

delay_stmt.seq_of_stmts. :
.prag.. delay_stmt .seq_of_stmts. ;

TERM_stmt : .prag. TERMINATE_TOKEN *;’
.prag.. ;

--TERM_stmt : ..prag.. set_exec_start TERMINATE_TOKEN *;’
- .prag.. set_exec_end ;

.seq_of_stmts.:

.prag..
Iseq_of_stmts;

O P2 111 (L3
I ..name..°‘,’ name ;

..compilation_unit., :

..prag..
I..compilation_unit.. compilation_unit ..prag.. ;

pkg_body_or_subprg body : pkg_body ;

.with_cl..use_cl.... :
l..with_cl..use_cl.... with_cl use_cls ;

use_cls :
..prag..
luse_cls use_cl ..prag.. :

-.sim_n.. :
[..sim_n..*’ sim_n ;

..or_excptn_choice.. :
I ..or_excptn_choice.. ‘I’ excptn_choice ;

111

~gen_prm_d.. :
i..gen_prm_d.. gen_prm_d ;

IN.OUT.. :
N,
IIN_TOKEN OUT_TOKEN ;

IS_BOX_.:
IIS_TOKEN name
IIS_TOKEN BOX ;

PROCEDURE__ident__IS_ : subprg_spec IS_TOKEN ;

.gen_act_part. :
Igen_act_part ;

...gen_asc.. :
| ..gen_asc..‘,’ gen_asc;

--.gen_fml_prmARROW.gen_act_prm :

-- set_dec_start

-- gen_act_prm

-- set_dec_end

- |

- set_dec_start

- gen_fml_prm ARROW gen_act_prm
- set_dec_end

»

.gen_fml_prmARROW.gen_act_prm :
gen_act_prm
Igen_fml_prm ARROW gen_act_pmn ;

expr_or_name_or_subprg_n_or_ent_n_or_ty_mk
: expr ;
FOR__ty_sim_n__USE_ :

FOR_TOKEN sim_n USE_TOKEN;

algt_cl. :
.prag..

112

| .prag..algt_cl.prag.. ;

~cmpon_cl.. :
| ..cmpon_cl.. cmpon_cl ..prag.. ;

ty_mk_rec_aggr : qualified_expr ;

%%

package parser is
procedure yyparse;

echo : boolean := false;
number_of_errors : natural := 0;

end parser;

with ada_tokens, ada_goto, ada_shift_reduce, ada_lex, text_io, GLOBAL;
use ada_tokens, ada_goto, ada_shift_reduce, ada_lex, text_io, GLOBAL;

package body parser is

procedure yyerror(s: in string := “syntax error”) is
begin

number_of_errors := number_of_errors + 1;
put(‘<<c *¥**).
put_line(s);

end yyerror;

#Hi%procedure_parse

end parser;

113

ADA_LEX.L

- */
--/* Lexical input for LEX for LALR(1) Grammar for ANSI Ada
-/ */

- Herman Fischer */
-f* Litton Data Systems */
-f* March 26, 1984 */
-f* */

--/* Accompanies Public Domain YACC format Ada grammar
-/ */

-f* */

-/* */

- */

- */

-/ */

-f* */

-/* */
%START IDENT Z

A [aA]

B [bB]

C (cC]

D [dD}

E [¢E])

F [fF]

G [gG]

H [hH]

I (if)

J 1]

K kK]

L [IL)

M fmM]

N [nN]

o [00]

P [pP)

Q (9Q]

R {rR]

S {sS]

T [tT)

U [uU]

\'/ vVl

w [wW]

X [xX]

Y (yY]

z [2Z]

R
K

114

*/

*/

{AHBHOHR}{T} {ECHO; ENTER(Z); retum(ABORT_TOKEN); }
{A}{B}{S) {ECHO; ENTER(Z); reurn(ABS_TOKEN); }
{AHCHCHENPHT) {ECHO; ENTER(Z); retun(ACCEPT_TOKEN); }
{AHCHCHENSHS] {ECHO; ENTER(Z); retum(ACCESS_TOKEN);}

{AM{LK{L} {ECHO; ENTER(Z); retum(ALL_TOKEN); }
{A}{N}{D]} {ECHO; ENTER(Z); return(AND_TOKEN); }
{AHRHRHA){Y]} {ECHO; ENTER(Z); reum(ARRAY_TOKEN); }
{AHT) {ECHO; ENTER(Z); return(AT_TOKEN); }
{(BHE}GHI}{N} {ECHO; ENTER(Z); return(BEGIN_TOKEN); }
{BHO}{D}{Y) {ECHO; ENTER(Z); retum{(BODY_TOKEN);)
{CHA}{SHE) {ECHO; ENTER(Z); retumn(CASE_TOKEN); }

{CHOHNHSHTIHAHNI{T) {ECHO; ENTER(Z); reum(CONSTANT_TOKEN); }
{(DHEHCHLHAMHRHE} {ECHO; ENTER(Z); reum(DECLARE_TOKEN);}
{(DHEH{L}{A}{Y] {ECHO; ENTER(Z); retum(DELAY_TOKEN); }
{(DHEHLHT}{A} {ECHO; ENTER(Z); return(DELTA_TOKEN); }
{(DHINHGHINTHS) {ECHO; ENTER(Z); return(DIGITS_TOKEN);)

{DHO} {ECHO; ENTER(Z); retum(DO_TOKEN); }
{EHL}{SHE]} {ECHO; ENTER(Z); return(ELSE_TOKEN); }
{EY{LY{SHI}{F} {ECHO; ENTER(Z); retum(ELSIF_TOKEN);}
{E}{NH{D} {ECHO; ENTER(Z); reurn(END_TOKEN);}

{EH{NH{THR}Y) {ECHO; ENTER(Z); return(ENTRY_TOKEN); }
{EHXHCHEHPHTHINHO}{N} {ECHO; ENTER(Z); reum(EXCEPTION_TOKEN); }
{EHXHIHT) {ECHO; ENTER(Z); retum(EXIT_TOKEN);}

{FHOHR]} {ECHO; ENTER(Z); return(FOR_TOKEN); }
{(FHUHUNHCHTHIHO}N} {ECHO; ENTER(Z); retum(FUNCTION_TOKEN); }
{GHEHNHEHRHI}NC} (ECHO; ENTER(Z); return(GENERIC_TOKEN); }

{GHOHTHO} {ECHO; ENTER(Z); retun(GOTO_TOKEN);}
{I}{F} {ECHO; ENTER(Z); return(IF_TOKEN); }

{I}{N} {ECHO; ENTER(Z); reurn(IN_TOKEN); }

{1}{S]) {ECHO; ENTER(Z); return(IS_TOKEN); }
{LHIHMHIHTHEHD} (ECHO; ENTER(Z); reurn(LIMITED_TOKEN);}
{LHOHO}{P} {ECHO; ENTER(Z); return(LOOP_TOKEN); }
{(M}{O}{D} {ECHO; ENTER(Z); reurn(MOD_TOKEN); }
{(NHEH{W]} {ECHO; ENTER(Z); return(NEW_TOKEN); }
{N}HOHT) {ECHO; ENTER(Z); retum(NOT_TOKEN); }
{NHUHL}L)} {ECHO; ENTER(Z); retum(NULL_TOKEN); }
{O}{F} {ECHO; ENTER(Z); return(OF_TOKEN); }

{O}HR} {ECHO; ENTER(Z); return(OR_TOKEN); }
{OHTHHHE}R}S)} {ECHO; ENTER(Z); reun(OTHERS_TOKEN);)
{OH{UKT} {ECHO; ENTER(Z); retum(OUT_TOKEN); }

{PHAHCHK} {AHGHE} (ECHO; ENTER(Z); retumn(PACKAGE_TOKEN); }
{P}{R}{A}{G}{Mi{A}) {ECHO; ENTER(Z); return(PRAGMA_TOKEN);}
{PHRHI}{VHA}{THE)} (ECHO; ENTER(Z); return(PRIVATE_TOKEN): }
{PHRHOHCHEHDHUHRHE} (ECHO; ENTER(Z); retum(PROCEDURE_TOKEN); }
{(RHAHI}{SHE]} {ECHO; ENTER(Z); return(RAISE_TOKEN); }
{RHAHNHGHE} (ECHO; ENTER(Z); retun(RANGE_TOKEN);}
{(RHE}{CHONR}{D} (ECHO; ENTER(Z); reurn(RECORD_TOKENY);}
{RHE}M]) {ECHO; ENTER(Z); return(REM_TOKEN); |
{RHEHN}{A}HMHE){S} {ECHO; ENTER(Z); retum(RENAMES_TOKEN);}
{RHEHTHU}{R}{N} {ECHO; ENTER(Z); return(RETURN_TOKEN); }
(RHEHVHEHRHSHE)} {ECHO; ENTER(Z); reurn(REVERSE_TOKEN);

115

{SHEM{LHENC)}{T) (ECHO; ENTER(Z); reurn(SELECT_TOKEN);)
{SHEHPHAHRHAHNTHE]) {ECHO; ENTER(Z); return(SEPARATE_TOKEN); }
{SHUN{BHTHYI{P}{E} {ECHO; ENTER(Z); reurn(SUBTYPE_TOKEN);}
{THA}SHK) {ECHO; ENTER(Z); retumn(TASK_TOKEN);}
{THEHRHM){IH{NHANHTHE) {ECHO; ENTER(Z); return(TERMINATE_TOKEN);}
{THH}E}{N} {ECHO; ENTER(Z); return(THEN_TOKEN); }
{THY){PHE) {ECHO; ENTER(Z); return(TYPE_TOKEN); }
{U}{SHE) {ECHO; ENTER(Z); retum(USE_TOKEN);}
{W}{HHE}{(N} {ECHO; ENTER(Z); return(WHEN_TOKEN); }
{WHH{IHL}{E} {ECHO; ENTER(Z); retum(WHILE_TOKEN); }
{(WHINTI{H]) {ECHO; ENTER(Z); return{WITH_TOKEN);}
{X}{O}{R]} {ECHO; ENTER(Z); retumn(XOR_TOKEN); }

“=>" {ECHO; ENTER(Z); reum(ARROW);)

«.” {ECHO; ENTER(Z); returmn(DOUBLE_DOT);}

ve*” ECHO; ENTER(Z); return(DOUBLE_STAR);}

“.=" {ECHO; ENTER(Z); return(ASSIGNMENT);}

“f=" (ECHO; ENTER(Z); retum(INEQUALITY);}

“>=" {ECHO; ENTER(Z); return(GREATER_THAN_OR_EQUAL);}
“<=" (ECHQO; ENTER(Z); return(LESS_THAN_OR_EQUAL);}

“<<* {ECHO; ENTER(Z); return(LEFT_LABEL_BRACKET);}

“>>” (ECHO; ENTER(Z); retumn(RIGHT_LABEL_BRACKET);)}

“<” {ECHO; ENTER(Z); reum(BOX);}

“&” (ECHO; ENTER(Z); retun(‘&'); }

“(“ {ECHO; ENTER(Z); retum(‘(‘); }

“y* (ECHO; ENTER(IDENT); return(*)"); }

“s» (ECHO; ENTER(Z); return(‘*’); }

“4+” (ECHO; ENTER(Z); return(‘+’); }

“> {ECHO; ENTER(Z); remurn(*,); }

“.” {ECHO; ENTER(Z); retumn(*-’); }

“>” {ECHO; ENTER(Z); remumn(’.’); }

“f" {ECHO; ENTER(Z); return(‘/); }

“” {ECHO; ENTER(Z); return(*:’); }

“” (ECHO; ENTER(Z); return(*;”); }

“< {ECHO; ENTER(Z); return(’<‘); }

“=" (ECHO; ENTER(Z); return(‘="); }

“>” {ECHO; ENTER(Z); return(*>"); }

“" {ECHO; ENTER(Z); return(‘’); }

<IDENT>\' {ECHO; ENTER(Z); return(*’");}

(a-z_A-Z}{a-z_A-Z0-9}* {ECHO; ENTER(IDENT);return(IDENTIFIER); }
[0-91{0-9_T*([.J(0-9_1+)((Ee](+]?[0-9_1+)? {

ECHO; ENTER(Z);

return(REAL_LITERAL); }
[0-91[0-9_J*#{0-9a-fA-F_1+([.}{0-9a-fA-F_]J+)2#([Ee){-+]?[0-9_1+)? {

ECHO; ENTER(2);

retum(INTEGER_LITERAL); }
(A" 1*\"\)*)*\” {ECHO; ENTER(Z); reurn(STRING_LITERAL);}

<ZSN((MINV)N' - {ECHO; ENTER(Z); return(CHARACTER_LITERAL); }

116

-- Looking for an elsif on a line by itself
AL N)*7elsif[\t}*n { ECHO;
ENTER(2),
--put_line (* just found a elsif on a line by itself **);
if GLOBAL.COUNT_CLARIFICATION
(GLOBAL RECORD_FLAGS_F.PANEL10.LINE_11) then
--put (* exec start ‘);
--put (*“ exec end *);
--new_line;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE’val (0), 1) := TRUE;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;
else
null;
end if;
linenum;
return(ELSIF_TOKEN); }

-

-- Looking for an “else” on a line by itself

AfN*"else™(\]*Wn { ECHO;
ENTER(Z);
--put_line (** just found a else on a line by itself **);
if GLOBAL.COUNT_CLARIFICATION
(GLOBALRECORD_FLAGS_F.PANEL10.LINE_10) then
--put (*“ exec start **);
--put (“ exec end *);
--new_line;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 1) := TRUE;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;
else
null;
end if;
linenum;

reurn(ELSE_TOKEN); }

-- Looking for a “then” on a line by itself
Af\]*"then”[¥\ { ECHO;
ENTER(Z);
--put_line (** just found a then on a line by itself *‘);
if GLOBAL.COUNT_CLARIFICATION
(GLOBAL.RECORD_FLLAGS_F.PANEL10.LINE_10) then
--put (* exec start **);
--put (* exec end *);

117

~-new_line;

GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 1) := TRUE;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE val (0), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;

-- Looking for an “others” on a line by itself

A[\]*"others”[t]*\n { ECHO;
ENTER(Z);
--put_line (* just found a others on a line by itself **);
if GLOBAL.COUNT_CLARIFICATION
(GLOBAL RECORD_FLAGS_F.PANEL10.LINE_10) then
—put (* exec start “);
--put (* exec end *);
new_line;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 1) := TRUE;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (0), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;
else
null;
end if;
linenum:;
retun(OTHERS_TOKEN); }

- Looking for a banner comment of just hyphens *---”, must be longer

- than two initial hypens, otherwise it is a empty comment.

A[NG*---""-"*[]*n { ECHO;

-- put_line (* found a banner comment of just hyphens *);

GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (5), 1) := TRUE;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE’val (5), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;
linenum; }

-

-- Checking for empty comments on a line by themselves

AND*”--"[NJ*™a { ECHO;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (6), 1) := TRUE;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE val (6), 2) := TRUE;
GLOBAL.ADD_TO_ARRAY;
linenum; }

118

-- Checking for blank lines

ALNI*n { ECHO;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (7), 1) := TRUE;
GLOBAL FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (7), 1) := TRUE;
GLOBAL.ADD_TO_ARRAY;
linenum;)

[N} ECHO; -- ignore spaces and tabs

“~* Programmed” {ECHO;
GLOBAL.SPECIAL_COMMENT := TRUE;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE =
GLOBAL . HOW_PRODUCED’val (0); }

“~*_Generated” { ECHO;
GLOBAL.SPECIAL_COMMENT := TRUE;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE :=
GLOBAL.HOW_PRODUCED'val (1); }

“—* Converted” {ECHO;
GLOBAL.SPECIAL_COMMENT := TRUE;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE :=
GLOBAL HOW_PRODUCED'val (2); }

“.*_Copied” { ECHO;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE :=
GLOBAL.HOW_PRODUCED'val (3);
GLOBAL.SPECIAL_COMMENT := TRUE;)

“~*_Modified” { ECHO;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE :=
GLOBAL.HOW_PRODUCED'val (4);
GLOBAL.SPECIAL_COMMENT := TRUE;)

-- User will need to follow the following examples if they want to include
-- removed code in their counts

-- --*_Removed Executables => 45, Declarations => 4, Pragmas => 0

-- --*_Removed Exec => 45, Dec =>4, Prag => 0

- --* RemovedE=>45,D=>4,P=>0

“--*_Removed “.* { ECHO;
GLOBAL.CURRENT_SETTINGS.SECOND_ATTRIBUTE :=
GLOBAL.HOW_PRODUCED'val (5);
GLOBAL.SPECIAL_COMMENT := TRUE;
GLOBAL.SPEC_COMMENT_LENGTH := ada_lex_dfa.yytext'length;
GLOBAL.SPEC_COMMENT_STRING (1 .. GLOBAL.SPEC_COMMENT_LENGTH)
:=ada_lex_dfa.yytext;
GLOBAL.PARSE_SPECIAL._COMMENT (GLOBAL REMOVED_NUM,
GLOBAL.SPEC_COMMENT_LENGTH,
GLOBAL.SPEC_COMMENT_STRING); }

119

“.* New_work” { ECHO;

GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN'val
(DX

GLOBAL.SPECIAL._COMMENT := TRUE;)

“~*_Previous_version” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN'val
1
GLOBAL.SPECIAL_COMMENT := TRUE, }

“—*_COTS” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL ORGIN'val
@)
GLOBAL.SPECIAL_COMMENT := TRUE,; }

“.* GFS” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL .ORGIN'val
3
GLOBAL.SPECIAL_COMMENT = TRUE; }

“-*_Annother_product” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN'val
@)
GLOBAL.SPECIAL_COMMENT := TRUE; }

“..*_VSL_spt_library” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN'val
(5)%
GLOBAL.SPECIAL_COMMENT := TRUE; }

“..*_VS_OS_or_utility” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN val
6);
GLOBAL.SPECIAL_COMMENT := TRUE; }

“_*_A_modified_spt_lib” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGINval
)3
GLOBAL.SPECIAL_COMMENT := TRUE; }

“-*_Other_comm_lib” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGIN'val
@
GLOBAL.SPECIAL_COMMENT ;= TRUE,; }

“~*_Reuse_library” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE := GLOBAL.ORGINval
o)
GLOBAL.SPECIAL_COMMENT := TRUE; }

120

“--*_Other_Software_component” { ECHO;
GLOBAL.CURRENT_SETTINGS.THIRD_ATTRIBUTE :=
GLOBAL.ORGIN’val (10);
GLOBAL .SPECIAL_COMMENT := TRUE; }

“~*_Part_of_product” { ECHO;
GLOBAL.CURRENT_SETTINGS.FOURTH_ATTRIBUTE :=
GLOBAL.USAGE'val (0);
GLOBAL.SPECIAL_COMMENT := TRUE;)

“-*_External_to_product” { ECHO;
GLOBAL.CURRENT_SETTINGS.FOURTH_ATTRIBUTE :=
GLOBAL.USAGE'val (1);
GLOBAL.SPECIAL_COMMENT := TRUE; }

-- To include an estimated or planned value for executable, declarations, and or pragmas, the
-- user will need to follow the following examples

-- --*_Estimated Executables => 2245, Declarations => 400, Pragmas => 14

-- --*_Estimated Exec => 2245, Dec => 400, Prag => 14

-- --*_Estimated E => 2245, D => 400,P => 14

“—*_Estimated_or_planned *.* { ECHO;
GLOBAL.CURRENT_SETTINGS.FIFTH_ATTRIBUTE :=
GLOBAL.DEVELOPMENT_STATUS val (0);
GLOBA" .S 'ECIAL_COMMENT := TRUE;
GLOBAL.SPEC_COMMENT_LENGTH :=ada_lex_dfa.yytext’length;
GLO3AL.SPEC_COMMENT_STRING (1..
GLOBAL.SPEC_COMMENT_LENGTH) := ada_lex_dfa.yytext;
GLOBAL.PARSE_SPECIAL_COMMENT (GLOBAL.ESTIMATED_NUM,
GLOBAL.SPEC_COMMENT _LENGTH,
GLOBAL.SPEC_COMMENT_STRING); }

“-*_Designed” { ECHO;
GLOBAL.CURRENT_SETTINGS .FIFTH_ATTRIBUTE :=
GLOBAL.DEVELOPMENT_STATUS 'val (1);
GLOBAL.SPECIAL_COMMENT := TRUE; }

“~*_Coded” (ECHO;
GLOBAL.CURRENT_SETTINGS.FIFTH_ATTRIBUTE :=

GLOBAL.DEVELOPMENT_STATUS val (2);
GLOBAL.SPECIAL_COMMENT := TRUE; }

“—*_Unit_tests_completed” { ECHO;
GLOBAL.CURRENT_SETTINGS FIFTH_ATTRIBUTE :=
GLOBAL.DEVELOPMENT_STATUS 'val (3);
GLOBAL.SPECIAL_COMMENT := TRUE; }

“-*_Integrated_into_components” { ECHO;
GLOBAL.CURRENT_SETTINGS.FIFTH_ATTRIBUTE :=

GLOBAL.DEVELOPMENT_STATUS 'val (4);
GLOBAL.SPECIAL_COMMENT := TRUE; }

121

“—*_Test_readiness_rev_completed” { ECHO;
GLOBAL.CURRENT_SETTINGS FIFTH_ATTRIBUTE:=

GLOBAL .DEVELOPMENT_STATUS val (5);
GLOBAL.SPECIAL_COMMENT := TRUE,; }

“_*_CSCI_completed” { ECHO;
GLOBAL.CURRENT_SETTINGS.FIFTH_ATTRIBUTE :

GLOBAL.DEVELOPMENT_STATUS val (6);
GLOBAL.SPECIAL_COMMENT := TRUE; }

“-*_Svsiem_tests_completed” { ECHO;
GLOBAL.CURRENT_SETTINGS.FIFTH_ATTRIBUTE :

GLOBAL.DEVELOPMENT_STATUS val (7);
GLOBAL.SPECIAL_COMMENT := TRUE; }

am

-- Checking for comments on their own line
A[ND*--“*n { ECHO;
GLOBAL.THIRD_CHAR := ada_lex_dfa.yytext (3);
GLOBAL.SPEC_COMMENT_LENGTH := ada_lex_dfa yytext'length;
GLOBAL.SPEC_COMMENT_STRING (1 ..
GLOBAL.SPEC_COMMENT_LENGTH):= ada_lex_dfa.yytext;
GLOBAL.DETERMINE_TYPE_COMMENT
(GLOBAL.SPEC_COMMENT_LENGTH,
GLOBAL.THIRD_CHAR,
GLOBAL.SPEC_COMMENT_STRING);
GLOBAL.ADD_TO_ARRAY;
linenum; }

-

-- Looking for a comment on a line with source code.
-- Conditions:
-- Actions:
. { ECHO;
if GLOBAL.EXECLEVEL >0 or
GLOBAL.DECLEVEL >0 or
GLOBAL.PRAGMALEVEL >0 then
GLOBALFLAGS_ARRAY (GLOBAL.STMT_TYPE'val (4), 1) := TRUE;
GLOBAL.FLAGS_ARRAY (GLOBAL.STMT_TYPE'val (4), 2) := TRUE;
else
null;
end if; }

{ ECHO;
text_io.put_line(*?? lexical error” & ada_lex_dfa.yytext & “777);
NUM_EITOors := num_errors + 1; }

122

{\n) { ECHO;
GLOBAL.ADD_TO_ARRAY;
linenum; }

%%

with TEXT_1O,
ada_tokens,
GLOBAL,
ada_lex_dfa,
TAE;

use ada_tokens;

package ada_lex is

lines : positive := 1;
num_errors : natural ;= 0;

procedure DECREASE_DECLEVEL;
procedure linenum;
function yylex return token;

end ada_lex;

package body ada_lex is

procedure DECREASE_DECLEVEL is
begin

GLOBAL.DECLEVEL :=0;
end DECREASE_DECLEVEL;

procedure linenum is

begin
text_io.put(integer’image(lines) & *:”);
lines := lines + 1;

end linenum;

#Ht

end ada_lex;

123

GLOBAL_S.A

-- #%* TAE Plus Code Generator version V5.1
-- *3* Lile: global_s.a
-- *** Generated: Apr 15 10:49:42 1993

BEERB SRR LR EEERE SRR RRE SRR EBESRE RS ERER A S SR EN RS R B R B R h kR e B R R R TR R R RE

P
-- * Global -- Package SPEC
- &
P 1T] * L 1 *h P22 3RS ISP SS LA RI SRR TR SR LSRR L2 2 2 L 22

with X_Windows;
with Text_IO;
with TAE;

use TAE;
package Global is

--| PURPOSE:

--| This package is automatically “with”ed in to each panel package body.
--| You can insert giobal variables here.

-l

--§ INITIALIZATION EXCEPTIONS: (none)
-

--I NOTES: (none)

-l

--lREGENERATED:

--| This file is generated only once.

-l

--l CHANGE LOG:

--115-Apr-93 TAE Generated

--*_Programmed

-- (+) begin added code

type MY_VALUE is array (1..1) of String (1..TAE.Tae_Tacconf.STRINGSIZE);

SPECIAL_COMMENT,

COMMENT_FLAG : boolean := false;
SPEC_COMMENT_LENGTH,
EXECLEVEL,

DECLEVEL,

PRAGMALEVEL . integer :=0;
REMOVED_NUM : integer ;= -1;
ESTIMATED_NUM : integer:= 1:
THIRD_CHAR : character ;= “ *;

124

SPEC_COMMENT _STRING : string (1 .. 1024) := (others => * *);

OUT_FILE_TYPE : text_io.file_type;
F : text_io.file_type;
FILE_LIST_NAME : string (1.. 1024) := (others => * *);

type STMT_TYPE is (EXECUTABLE, DECLARATIONS, COMPILER_DIRECTIVES,
CMTS_ON_OWN_LINE, CMTS_WITH_SRC_CODE,
BANNERS_NON_BLANK_SPACERS, BLANK_EMPTY_CMTS,
BLANK_LINES);

type HOW_PRODUCED is (PROGRAMMED, GENERATED, COVERETED,
COPIED, MODIFIED, REMOVED);

type ORJIN is NEW_WORK, PREVIQUS_VERSION, COTS, GFS, ANNOTHER_PRODUCT,
VENDOR _SUPPLIED_SPT_LIB, VENDOR_SUPPLIED_OS,
LOCAL_SUPPLIED_LIB, COMMERCIAL_LIB, REUSE_LIB,
OTHER_COMPONENT_LIB);
type USAGE is (PRIMARY_PRODUCT, EXTERNAL);
type DEVELOPMENT_STATUS is (ESTIMATED, DESIGNED, CODED, UNIT_TEST_DONE,
INTEGRATED, TEST_READINESS_REVIEW,
CSCI_COMPLETED, SYSTEM_TESTS_COMPLETED);

type COUNT_ARRAY_TYPE is array (STMT_TYPE, HOW_PRODUCED,
ORGIN, USAGE, DEVELOPMENT_STATUS) of natural;

type FLAGS_TYPE_ARRAY is armay (STMT_TYPE, 1..2) of boolean;
type PRIORITY_TYPE_ARRAY is array (1..8) of STMT_TYPE;
type ORDER_OF_PRECEDENCE is range 1..8;

type CURRENT_SETTINGS_TYPE is

record

FIRST_ATTRIBUTE : STMT_TYPE := EXECUTABLE;
SECOND_ATTRIBUTE : HOW_PRODUCED :=PROGRAMMED;
THIRD_ATTRIBUTE : ORGIN :=NEW_WORK;
FOURTH_ATTRIBUTE : USAGE := PRIMARY_PRODUCT;

FIFTH_ATTRIBUTE : DEVELOPMENT_STATUS := SYSTEM_TESTS_COMPLETED;
end record;

type STMT_TOTALS_TYPE is
record
EXEC_TOTAL,
DEC_TOTAL,
PRAGMA_TOTAL,
CMTS_ON_OWN_TOTAL,
CMTS_W_SRC_TOTAL,

125

BANNER_CMTS_TOTAL,

EMPTY_CMTS_TOTAL,

BLANK_LINES_TOTAL : natural :=0;
end record;

type HOW_PRODUCED_TYPE is

record
PROGRAMMED_TOTAL,
GENERATED_TOTAL,
CONVERTED_TOTAL,
COPIED_TOTAL,
MODIFIED_TOTAL,
REMOVED_TOTAL : natural :=0;

end record;

type ORGIN_TYPE is

record
NEW_WORK_TOTAL,
PREVIOUS_VERSION_TOTAL,
COTS_TOTAL,
GFS_TOTAL,
ANNOTHER_PRODUCT_TOTAL,
VS_SPT_LIB_TOTAL,
VS_SPT_OS_TOTAL,
LOCAL_SUPPLIED_LIB_TOTAL,
COMMERCIAL_LIB_TOTAL,
REUSE_LIB_TOTAL,
OTHER_COMPONENT_TOTAL : natural :=0;
end record;

type USAGE_TYPE is

record
PRIMARY_PRODUCT_TOTAL,
EXTERNAL_TOTAL : natural :=0;
end record;

type DEVELOPMENT_STATUS_TYPE is

record
ESTIMATED_TOTAL,
DESIGNED_TOTAL,
CODED_TOTAL,
UNIT_TEST_DONE_TOTAL,
INTEGRATED_TOTAL,
TEST_READINESS_REVIEW_TOTAL,
CSCI_COMPLETED_TOTAL,
SYSTEM_TEST_TOTAL : natural :=0;

end record;

type COUNT_TOTALS_TYPE is

record
STMT_NUMS : STMT_TOTALS_TYPE:

126

PRODUCED_NUMS

ORGIN_NUMS
USAGE_NUMS

DEVELOPED_NUMS

end record;

type panel_2 is

record
report_a
report_b
report_c
report_d
report_e
report_f
next_scrn
out_file_pame
in_file_name
requestor
report_heading

end record;

type panel_3 is

record
line_1
line_3
line_4
line_6
line_7
line_8
line_9
line_10
line_1_int
line_3_int
line_4_int
line_6_int
line_7_int
line_8_int
line_9_int
line_10_int
def_data_array

end record;

type panel_4 is
record
line_1
line_2
line_3
line_4
line_5
line_6

: boolean
: boolean
: boolean
. boolean
: boolean
. boolean
: boolean
. boolean := false;
: TAE.TAEINT :=1;
: TAE.TAEINT :=2;
: TAE.TAEINT :=3;
: TAE.TAEINT :=4;
: TAE.TAEINT :=§5;
: TAE.TAEINT :=6;
: TAE.TAEINT := 7,
: TAE.TAEINT :=§;

: HOW_PRODUCED_TYPE;
: ORGIN_TYPE;
: USAGE_TYPE;
: DEVELOPMENT_STATUS_TYPE;

: boolean := true;

: boolean := false;

: boolean := false;
: boolean := false;
: boolean := false;
: boolean := false;

: boolean := false;
: my_value;
: my_value;
: my_value;
: my_value;

:= true;
= true;
= true;
= false;
:= false;
.= false;
:= false;

: boolean := false;

: boolean := true;
: boolean := true;
: boolean := true;
: boolean := true;
: boolean := true;
: boolean := false;

127

def_data_array
end record;

type panel_S is

record
line_1
line_3
line_4
line_$5
line_6
line_7
line_8
line_9
line_10
line_11
line_12
def_data_array

end record;

type panel_6 is
record
line_1
line_2
DEL_OPTION
def_data_array
end record;

type panel_9 is

record
line_1
line_2
line_3
line_4
line_5§
line_6
line_7
line_8
def_data_array

end record;

type panel_10 is
record

SEEEE

: boolean := false;

: boolean := true;
: boolean := true;
: boolean := true;
: boolean := true;
: boolean := true;
: boolean := false;
: boolean := false;
: boolean := true;

: boolean := true;
: boolean := true;
: boolean := true;

: boolean := false;

: boolean := true;

: boolean := false;

: MY_VALUE;
. boolean := false;

: boolean := false;
: boolean := false;
. boolean := false;
: boolean ;= false;
: boolean := false;
: boolean := false;
: boolean := false;

.

: boolean := true;

: boolean := false;

; boolean := true;
: boolean := true;
: boolean ;= true;
: boolean := true;
: boolean := true;

128

-

line_6 : boolean := true;
line_7 : boolean := true;
line_8 : boolean := true;
line_9 : boolean := true;
line_10 : boolean := true;
line_11 : boolean := true;
line_12 . boolean := true;
line_13 : boolean := true;
line_1_int : TAE.TAEINT :=1;
line_2_int : TAE.TAEINT :=1;
line_3_int : TAE.TAEINT :=3;
line_4_int : TAETAEINT :=1;
line_5_int : TAE.TAEINT :=3;
line_6_int : TAETAEINT :=1;
line_7_int : TAE.TAEINT :=};

line_8_int : TAE.TAEINT :=1;
line_9_int : TAE.TAEINT :=3;

line_10_int : TAE.TAEINT :=1;
line_11_int : TAE.TAEINT :=1;
line_12_int : TAE.TAEINT :=3;
line_13_int : TAE.TAEINT =1;
def_data_array : boolean := false;
end record;
type panel_11is
record
line_1 : boolean := true;
line_2 : boolean := true;
line_3 : boolean := true;
line_4 : boolean := true;
line_5 : boolean := true;
line_6 . boolean := true;
line_1_int : TAE.TAEINT :=3;
line_2_int : TAE.TAEINT:=1;
line_3_int : TAE.TAEINT :=3;
line_4_int : TAE.TAEINT :=1;
line_5_int : TAE.TAEINT :=3;
line_6_int : TAE.TAEINT :=4;
end record;
type flags is
record
panel2 : panel _2;
panel3 ¢ panel_3;
panel4 : panel_4;
panel5 : panel_5;
panel6 : panel_6;
panel9 : panel_9;
panell0 : panel_10;
panelll : panel_11;
end record,

129

record_flags : flags;
record_flags_A : flags;
record_flags B : flags;

record_flags_C : flags;
record_flags D : flags;
record_flags_E : flags;
record_flags_F : flags;

COUNT_ARRAY_A :COUNT_ARRAY_TYPE := (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_ARRAY_B : COUNT_ARRAY_TYPE := (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_ARRAY_C :COUNT_ARRAY_TYPE := (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_ARRAY_ D :COUNT_ARRAY_TYPE := (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_ARRAY_E : COUNT_ARRAY_TYPE := (others => (others =>
(others => (others =>
(others => 0)))));

COUNT_ARRAY_F : COUNT_ARRAY_TYPE := (oiliers => (others =>
(others => (others =>
(others => 0)))));

FLAGS_ARRAY : FLAGS_TYPE_ARRAY;
PRIORITY_ARRAY_A _E : PRIORITY_TYPE_ARRAY;
PRIORITY_ARRAY_F : PRIORITY_TYPE_ARRAY;

CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE;

COUNT_TOTALS : COUNT_TOTALS_TYPE;

COUNT_TOTALS_A : COUNT_TOTALS_TYPE;
COUNT_TOTALS_B : COUNT_TOTALS_TYPE;
COUNT_TOTALS_C : COUNT_TOTALS_TYPE;
COUNT_TOTALS_D : COUNT_TOTALS_TYPE;
COUNT_TOTALS_E : COUNT_TOTALS_TYPE;
COUNT_TOTALS_F : COUNT_TOTALS_TYPE;

TOTAL_COUNTED_A,
TOTAL_COUNTED_B,
TOTAL_COUNTED_C,
TOTAL_COUNTED_D,

130

TOTAL_COUNTED_E,
TOTAL_COUNTED_F : natural :=0;

-- (-) end added code
--*_Generated
package Taefloat_IO is new Text_IO.Float_IO (TAE.Taefloat);

Default_Display_Id : X_Windows.Display;

-- procedure CHECK_FLAG_SETTINGS;

-- Application_Done -- Subprogram SPEC

.......

function Application_Done
return Boolean;

--l PURPOSE:

--| This function retums true if a “quit” event handler has called
--| Set_Application_Done, otherwise it returns false.

-

--l EXCEPTIONS: (none)

-l

--| NOTES: (none)

Set_Application_Done -- Subprogram SPEC

procedure Set_Application_Done;

--| PURPOSE:
--I This procedure can be used by an event handler, typically a “quit”

131

--I button, to signal the end of the application.
-l

--| EXCEPTIONS: (none)

-{

-- NOTES: (none)

!

Switch_flag -- Subprogram SPEC

function Switch_Flag (FLAG_IN : in boolean) return boolean;

- PURPOSE:

-1 This procedure will be used when the user changes the default settings
~-| for the custom format report.

-

-~ EXCEPTIONS: (none)

-

~--|NOTES: (none)

-

function CHECK_REPORT_A_E return boolean;

function CHECK_REPORT_F return boolean;

function COUNT_CLARIFICATION (BOOLEAN_IN : in BOOLEAN) return BOOLEAN;
-
-
-l
-1

-—

-

procedure OPEN_OUT_FILE;

-

procedure CLOSE_OUT_FILE;

132

function FIND_LENGTH (FILELIST : in GLOBAL.MY_VALUE) return integer;

-

procedure ADD_TO_ARRAY;

procedure COUNT_LINE (IN_RECORD :in CURRENT_SETTINGS_TYPE;
ARRAY_TYPE : in out COUNT_ARRAY_TYPE;
ADD_NUMBER :in natural ;= 1);

procedure DETERMINE_WHICH_ARRAY (IN_RECORD :in
CURRENT_SETTINGS_TYPE;
ADD_NUMBER :in natural:=1),

procedure PARSE_SPECIAL_COMMENT (IN_NUM : in integer;
IN_LENGTH : in integer;
IN_STRING : in string);

procedure DETERMINE_TYPE_COMMENT (IN_BANNER_LENGTH : in out integer;

IN_BANNER_CHAR : in out character;
IN_BANNER_STRING : in out STRING);

end Global;

133

GLOBAL B.A

-- #** TAE Plus Code Generator version V5.1
-- *#% File: global_b.a
- *%% Generated: Apr 15 10:49:42 1993

- P - .

-

— * Global ~ Package BODY

with TEXT_IO;
use TEXT_IO;
package body Global is

--Il NOTES: (none)

-

--| REGENERATED:

--1 This file is generated only once.
-

-l CHANGE LOG:

--115-Apr-93 TAE Generated

—*_Programmed

package TAE_INTEGER_IN_OUT is new integer_io (TAE.TAEINT),
use TAE_INTEGER_IN_OUT;

package INTEGER _IN_OUT is new integer_io (integer);
use INTEGER_IN_OUT;

package ENUMERATION_IN_OUT is new ENUMERATION_IO (STMT_TYPE);
use ENUMERATION_IN_OUT;

--*_Generated
Is_Application_Done : Boolean := FALSE;

-~ . Application_Done -~ Subprogram BODY

.....

function Application_Done
return Boolean is

- NOTES: (none)

134

begin -- Application_Done
return Is_Application_Done;

end Application_Done;

- . Set_Application_Done -- Subprogram BODY

.........

procedure Set_Application_Done is

--INOTES: (none)

begin -- Set_Application_Done
Is_Application_Done := TRUE;

end Set_Application_Done;

--*_Programmed

-- . Switch_flag -- Subprogram SPEC

.....

function Switch_Flag (FLAG_IN : in boolean) return boolean is

--lPURPOSE:

--1 This procedure will be used when the user changes the default settings
--| for the custom format report.

-l

--| EXCEPTIONS: (none)

-

--INOTES: (none)

TEMP_FLAG :boolean;

begin
if FLAG_IN then
TEMP_FLAG := false;
else
TEMP_FLAG := true;

135

end if;
return TEMP_FLAG;

end Switch_Flag;

function CHECK_REPORT_A_E return boolean is
BOOLEAN_FLAG : boolean := FALSE;
begin
if RECORD_FLLAGS.PANEL2.REPORT_A or
RECORD_FLAGS.PANEL2.REPORT_B or
RECORD_FLAGS.PANEL2 REPORT_C or
RECORD_FLAGS.PANEL2.REPORT_D or
RECORD_FLAGS.PANEL2 REPORT_E then
BOOLEAN_FLAG := TRUE;
end if;
return BOOLEAN_FLAG;
end CHECK_REPORT_A_E;
function CHECK_REPORT _F return boolean is
BOOLEAN_FLAG : boolean := FALSE;
begin
if RECORD_FLAGS.PANEL2 REPORT _F then
BOOLEAN_FLAG := TRUE;
end if;
return BOOLEAN_FLAG;

end CHECK_REPORT_F;

function COUNT_STMT_TYPE (S :in STMT_TYPE;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;

136

-

begin

for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for O in ORGIN'FIRST .. ORGIN’LAST loop
for U in USAGE'FIRST .. USAGE’'LAST loop
for D in DEVELOPMENT_STATUS FIRST .. DEVELOPMENT_STATUS LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S, H, 0, U, D);
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_STMT_TYPE;

function COUNT_HOW_PRODUCED (H ‘ : in HOW_PRODUCED;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE’LAST loop
for O in ORGIN’FIRST .. ORGIN’LAST loop
for U in USAGE'FIRST . USAGE’'LAST loop
for D in DEVELOPMENT_STATUSFIRST .. DEVELOPMENT_STATUS LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S, H, O, U, D);
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;
end COUNT_HOW_PRODUCED;
function COUNT_ORGIN (O : in ORGIN;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is
TEMP_COUNT : integer :=0;
begin
for S in STMT_TYPE'FIRST .. STMT_TYPE'LAST loop

for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for U in USAGE’'FIRST .. USAGE’LAST loop

137

for D in DEVELOPMENT_STATUS FIRST .. DEVELOPMENT_STATUS 'LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (§,H,0, U, D),
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_ORGIN;

function COUNT_USAGE (U : in USAGE;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE'LAST loop
for H in HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for O in ORGIN'’FIRST .. ORGIN’LAST loop
for D in DEVELOPMENT_STATUS’FIRST .. DEVELOPMENT_STATUS ’LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S.H,0, U, D);
end loop;
~end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_USAGE;

function COUNT_DEVELOPMENT_STATUS (D : in DEVELOPMENT _STATUS;
’ IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE’LAST loop
for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for O in ORGIN’FIRST .. ORGIN’LAST loop
for U in USAGE’FIRST .. USAGE'LAST loop
TEMP_COQUNT := TEMP_COUNT + IN_COUNT_ARRAY (§,H,0, U, D);
end loop;
end loop;
end loop;
end loop;

138

retum TEMP_COUNT;

end COUNT_DEVELOPMENT_STATUS;

procedure COUNT_ATTRIBUTE_ONE (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE)is

begin

if IN_RECORD_FLLAGS.PANELS3 line_1 then
IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL := COUNT_STMT_TYPE
(STMT_TYPE’val (0), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_3 then
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL := COUNT_STMT_TYPE
(STMT_TYPE'val (1), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_4 then
IN_COUNT_TOTALS.STMT_NUMS.PRAGMA _TOTAL := COUNT_STMT_TYPE
(STMT_TYPE'val (2), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_6 then
IN_COUNT_TOTALS.STMT_NUMS.CMTS_ON_OWN_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE’val (3), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_7 then
IN_COUNT_TOTALS.STMT_NUMS.CMTS_W_SRC_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE’val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3 line_8 then
IN_COUNT_TOTALS.STMT_NUMS.BANNER_CMTS_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (5), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_9 then
IN_COUNT_TOTALS.STMT_NUMS.EMPTY_CMTS_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (6), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_10 then
IN_COUNT_TOTALS.STMT_NUMS.BLANK_LINES_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE val (7), IN_ARRAY),
emnd if;

end COUNT_ATTRIBUTE_ONE;

procedure COUNT_ATTRIBUTE_TWO (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;

139

IN_ARRAY :in COUNT_ARRAY_TYPE) is
begin

if IN_RECORD_FLAGS.PANEI 4.line_1 then
IN_COUNT_TOTALS.PRODUCED_NUMS.PROGRAMMED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (0), IN_ARRAY);
end if:
if IN_RECORD_FLAGS.PANELA line_2 then
IN_COUNT_TOTALS.PRODUCED_NUMS.GENERATED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED’val (1), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA4.line_3 then
IN_COUNT_TOTALS.PRODUCED_NUMS.CONVERTED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (2), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA4.line_4 then
IN_COUNT_TOTALS.PRODUCED_NUMS.COPIED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED’val (3), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA4.line_5 then
IN_COUNT_TOTALS.PRODUCED_NUMS.MODIFIED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED’val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA line_6 then
IN_COUNT_TOTALS.PRODUCED_NUMS.REMOVED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED’val (5), IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_TWO;

procedure COUNT_ATTRIBUTE_THREE (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE)is

begin

if IN_RECORD_FLAGS.PANELS line_1 then
IN_COUNT_TOTALS.ORGIN_NUMSNEW_WORK_TOTAL := COUNT_ORGIN
(ORGIN’val (0), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS.line_3 then
IN_COUNT_TOTALS.ORGIN_NUMS PREVIOUS_VERSION_TOTAL :=
COUNT _ORGIN (ORGIN’val (1), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS.line_4 then
IN_COUNT_TOTALS.ORGIN_NUMS.COTS_TOTAL := COUNT_ORGIN (ORGIN’vai (2),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS.line_5 then

140

IN_COUNT_TOTALS.ORGIN_NUMS.GFS_TOTAL := COUNT_ORGIN (ORGIN'val (3),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_6 then
IN_COUNT_TOTALS.ORGIN_NUMS.ANNOTHER_PRODUCT_TOTAL :=
COUNT_ORGIN (ORGIN’val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_7 then
IN_COUNT_TOTALS.ORGIN_NUMS.VS_SPT_LIB_TOTAL := COUNT_ORGIN
(ORGIN'val (5), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS. line_8 then
IN_COUNT_TOTALS.ORGIN_NUMS.VS_SPT_OS_TOTAL := COUNT_ORGIN
(ORGIN'val (6), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS5.line_9 then
IN_COUNT_TOTALS.ORGIN_NUMS.LOCAL_SUPPLIED_LIB_TOTAL :=
COUNT_ORGIN (ORGIN’val (7), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_10 then
IN_COUNT_TOTALS.ORGIN_NUMS.COMMERCIAL _LIB_TOTAL :=
COUNT_ORGIN (ORGIN’val (8), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS5.line_11 then
IN_COUNT_TOTALS.ORGIN_NUMS REUSE_LIB_TOTAL := COUNT_ORGIN
(ORGIN’val (9), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS.line_12 then
IN_COUNT_TOTALS.ORGIN_NUMS.OTHER_COMPONENT_TOTAL :=
COUNT_ORGIN (ORGIN’val (10), IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_THREE;

procedure COUNT_ATTRIBUTE_FOUR (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE)is

begin

if IN_RECORD_FLAGS.PANELG.line_1 then

IN_COUNT_TOTALS.USAGE_NUMS.PRIMARY_PRODUCT_TOTAL :=
COUNT_USAGE (USAGE’val (0), IN_ARRAY);

end if;

if IN_RECORD_FLAGS.PANELG.line_2 then
IN_COUNT_TOTALS.USAGE_NUMS.EXTERNAL_TOTAL := COUNT_USAGE

(USAGE'’val (1), IN_ARRAY);
end if;

141

end COUNT_ATTRIBUTE_FOUR;

procedure COUNT_ATTRIBUTE_FIVE (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE,;
IN_ARRAY :in COUNT_ARRAY_TYPE)is

begin

if IN_RECORD_FLAGS.PANEL9Y.line_1 then
IN_COUNT_TOTALS.DEVELOPED_NUMS . ESTIMATED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (0),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_2 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.DESIGNED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (1),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_3 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.CODED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (2),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_4 then
IN_COUNT _TOTALS.DEVELOPED_NUMS.UNIT_TEST_DONE_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (3),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_5 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.INTEGRATED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (4),
IN_ARRAY);
end if;
if IN_ RECORD_FLAGS.PANELSY.line_6 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.TEST_READINESS_REVIEW_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS'val (5),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELSY.line_7 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.CSCI_COMPLETED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (6),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELOY.line_8 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.SYSTEM_TEST_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (7),
IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_FIVE;

142

function COUNT_CLARIFICATION (BOOLEAN_IN : in BOOLEAN) return boolean is
TEMP : boolean := FALSE;
begin

if BOOLEAN_IN then
TEMP = TRUE;
else
TEMP := FALSE;
end if;

retum TEMP;

end COUNT_CLARIFICATION;

function FIND_LENGTH (FILELIST : in GLOBAL.MY_VALUE) return integer is

TEMP_NUMBER : integer :=0;
TEMP_CHAR : character:="‘*

begin

for 1 in FILELIST range loop
forJin 1 .. 1024 loop
if FILELIST (I)(J) /=T =MP_CHAR then
TEMP_NUMBER :=TEMP_NUMBER + 1;
else
exit;
end if:
end loop;
end loop;

return TEMP_NUMBER;

end FIND_LENGTH;

procedure OPEN_OUT_FILE is
OUT_FILE_NAME : GLOBALMY_VALUE :=

GLOBAL.RECORD_FLAGS.PANEL2.OUT_FILE_NAME;
LENGTH : integer;

143

begin
LENGTH := FIND_LENGTH (OUT_FILE_NAME);
FILE_LIST_NAME(1.LENGTH) := OUT_FILE_NAME (1) (1. LENGTH);
create (OUT_FILE_TYPE, out_file, FILE_LIST_NAME (1.LENGTH));

end OPEN_OUT _FILE;

procedure CLOSE_OUT_FILE is

OUT_FILE_NAME : GLOBALMY_VALUE :=
GLOBAL RECORD_FLAGS.PANEL2.OUT_FILE_NAME;
LENGTH : integer;

begin

LENGTH := FIND_LENGTH (OUT_FILE_NAME);
FILE_LIST_NAME(1.LENGTH) := OUT_FILE_NAME (1) (1.LENGTH);
close (OUT_FILE_TYPE);

end CLOSE_OUT_FILE;

procedure DETERMINE_TYPE_COMMENT (IN_BANNER_LENGTH : in out integer;
IN_BANNER_CHAR :in out character;
IN_BANNER_STRING : in out STRING) is

-~ Function to determine if a particular comment is

-- a banner comment,

function BANNER_FOUND (BANNER_LENGTH : in integer;
BANNER_CHAR : in character;
BANNER_STRING : in STRING) return boolean is

FIRST : integer :=1;

BANNER : boolean := FALSE;
BLANK_SPACE : character := “ *;

HYPHEN : character := ‘-*;
BANNER_CHARS : string (1..4) := (others => * *);
COUNT_LOOP : integer :=0;
REPEAT_CHARS : boolean := FALSE;

begin

144

for I in BANNER_STRING first .. BANNER_STRING last - 1 loop

if BANNER_STRING ()=*-’ and
BANNER_STRING (I+1)=*-" then
BANNER_CHARS := BANNER_STRING (1+2..1+5);

for J in BANNER_STRING first+1+2 .. Banner_length - 4 loop

if BANNER_STRING (J) = BANNER_CHARS (1) or
BANNER_STRING (J) = BANNER_CHARS (2) or
BANNER_STRING (J) = BANNER_CHARS (3) or
BANNER_STRING (J) = BANNER_CHARS (4) or
BANNER_STRING (J) = BLANK_SPACE then
COUNT_LOOP := COUNT_LOOP + 1;
if COUNT_LOOP > 4 then
BANNER := TRUE;
end if;
else
BANNER := FALSE;
exit;
end if;
if count_loop < banner_length - 1 then
null;
else
exit;
end if;
end loop;

exit;
end if;

end loop;
return BANNER;

end BANNER_FOUND;

begin

- Checking for banner comments.

-- CONDITIONS:

-- Banner characters must be non-blank;

-- Banner characters must be either the third character from the
-- left, or blank charactor.

-- ACTION:

-- Set the start and stop flags to true for Banner comments.

if BANNER_FOUND (IN_BANNER_LENGTH, IN_BANNER_CHAR,

IN_BANNER_STRING) then
FLAGS_ARRAY (STMT_TYPE'val (5), 1) := TRUE;
FLAGS_ARRAY (STMT_TYPE'val (5), 2) := TRUE;

145

—————

-- Checking for comments on own line.

-- Conditions:

-- Start flags for Executable, Declaration, and or Pragma must not be

- set o true.

-- ACTIONS:

-- Set start and stop flags to true for Comments on own line.

else
FLAGS_ARRAY (STMT_TYPE'val (3), 1) := TRUE;
FLAGS_ARRAY (STMT_TYPE'val (3), 2) := TRUE;

end if;

end DETERMINE_TYPE_COMMENT;

-

function CHECKED_OKAY_A (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)
retum boolean is

OKAY : boolean := TRUE;
begin

case IN_CURRENT_SETTINGS FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (3) | STMT_TYPE’VAL (4) | STMT_TYPE'VAL (5) |
STMT_TYPE'VAL (6) | STMT_TYPE'VAL (7) =>
OKAY := FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.SECOND_ATTRIBUTE is
when HOW_PRODUCED’VAL (5) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN’VAL (5) | ORGIN’VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.FOURTH_ATTRIBUTE is
when USAGE’VAL (1) =>
OKAY :=FALSE;
when others =>
null;
end case;

146

case IN_CURRENT_SETTINGS FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS VAL (0) | DEVELOPMENT _STATUS'VAL (1) !
DEVELOPMENT_STATUS VAL (2) | DEVELOPMENT_STATUS’VAL (3) |
DEVELOPMENT_STATUS'VAL (4) | DEVELOPMENT_STATUS’VAL (5) 1
DEVELOPMENT_STATUS VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

return OKAY;

end CHECKED_OKAY_A;

function CHECKED_OKAY_B (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)
return boolean is

OKAY : boolean := TRUE;
begin

case IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (3) | STMT_TYPE'VAL (4) | STMT_TYPE’VAL (5) |
STMT_TYPE'VAL (6) | STMT_TYPE'VAL (7) =>
OKAY :=FALSE;
when others =>
null;

end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN’VAL (5) | ORGIN’VAL (6) =>
OKAY := FALSE,;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.FOURTH_ATTRIBUTE is
when USAGE'VAL (1) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS’VAL (0) ! DEVELOPMENT_STATUS VAL (1) =>
OKAY := FALSE;
when others =>

147

null;
end case;

return OKAY;

end CHECKED_OKAY_B;

function CHECKED_OKAY_C (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)
return boolean is

OKAY : boolean := TRUE;
begin

case IN_CURRENT_SETTINGS FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (5) 1 STMT_TYPE'VAL (6) | STMT_TYPE'VAL (7) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN’VAL (5) | ORGIN’VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS .FOURTH_ATTRIBUTE is
when USAGE'VAL (1) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS’VAL (0) | DEVELOPMENT_STATUS VAL (1) |
DEVELOPMENT_STATUS’VAL (2) | DEVELOPMENT_STATUS’VAL (3) !
DEVELOPMENT_STATUS'VAL (4) | DEVELOPMENT_STATUS VAL (5) |
DEVELOPMENT_STATUS'VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

return OKAY;

end CHECKED_OKAY_C;

148

function CHECKED_OKAY_D (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)
return boolean is

OKAY : boolean := TRUE;
begin

case IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (3) | STMT_TYPE’VAL (4) | STMT_TYPE'VAL (5) |
STMT_TYPE'VAL (6) | STMT_TYPE'VAL (7) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN’VAL (5) | ORGIN'VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.FOURTH_ATTRIBUTE is
when USAGE'VAL (1) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT _SETTINGS.FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS'VAL (0) | DEVELOPMENT_STATUS VAL (1) |
DEVELOPMENT_STATUS VAL (2) | DEVELOPMENT _STATUS’VAL (3)|
DEVELOPMENT_STATUS VAL (4) | DEVELOPMENT_STATUS’VAL (5) |
DEVELOPMENT_STATUS’VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

return OKAY;

end CHECKED_OKAY_D;

function CHECKED_OKAY_E (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)
return boolean is

149

OKAY : boolean := TRUE;
begin

case IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (5) | STMT_TYPE'VAL (6) | STMT_TYPE'VAL (7) =>
OKAY = FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN’VAL (5) ORGIN’VAL (6) =>
OKAY :=FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS . FOURTH_ATTRIBUTE is
when USAGE’VAL (1) =>
OKAY := FALSE;
when others =>
null;
end case;

case IN_CURRENT_SETTINGS.FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS’ VAL (0) | DEVELOPMENT_STATUS’VAL (1) |
DEVELOPMENT_STATUS'VAL (2) | DEVELOPMENT_STATUS'VAL (3) |
DEVELOPMENT_STATUS'VAL (4) | DEVELOPMENT_STATUS'VAL (5) |
DEVELOPMENT_STATUS’ VAL (6) =>
OKAY := FALSE;
when others =>
null;
end case;

return OKAY:;

end CHECKED_OKAY_E;

function CHECKED_OKAY_F (IN_CURRENT_SETTINGS : CURRENT_SETTINGS_TYPE)

return boolean is
OKAY : boolean := TRUE;

begin

150

.

case IN_CURRENT_SETTINGS .FIRST_ATTRIBUTE is
when STMT_TYPE'VAL (0) =>
if not GLOBAL RECORD_FLAGS_FPANEL3.LINE_1 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (1) =>
if not GLOBAL RECORD_FLAGS_F.PANEL3.LINE_3 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (2) =>
if not GLOBAL RECORD_FLAGS_F.PANEL3.LINE_4 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (3) =>
if not GLOBAL RECORD_FI.AGS_F.PANEL3.LINE_6 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (4) =>
if not GLOBAL RECORD_FLAGS_F.PANEL3.LINE_7 then
OKAY :=FALSE;
end if;
when STMT_TYPE’VAL (5) =>
if not GLOBAL RECORD_FL.AGS_F.PANEL3.LINE_8 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (6) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_9 then
OKAY :=FALSE;
end if;
when STMT_TYPE'VAL (7) =
if not GLOBAL RECORD_FLAGS_F.PANEL3.LINE_10 then
OKAY :=FALSE;
end if;
end case;

case IN_CURRENT_SETTINGS.SECOND_ATTRIBUTE is
when HOW_PRODUCED’VAL (0) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL4.LINE_1 then
OKAY :=FALSE;
end if;
when HOW_PRODUCED’VAL (1) =>
if not GLOBAL RECORD_FLLAGS_F.PANEL4.LINE_2 then
OKAY :=FALSE;
end if:
when HOW_PRODUCED’VAL (2) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL4.LINE_3 then
OKAY :=FALSE;
end if;
when HOW_PRODUCED’VAL (3) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL4.LINE_4 then
OKAY :=FALSE;

151

end if;
when HOW_PRODUCED’VAL (4) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL4LINE_S then
OKAY :=FALSE;
end if;
when HOW_PRODUCED’VAL (5) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL4.LINE_6 then
OKAY :=FALSE;
end if;
end case;

case IN_CURRENT_SETTINGS.THIRD_ATTRIBUTE is
when ORGIN'VAL (0) =>
if not GLOBAL.RECORD_FLAGS_F.PANELS5.LINE_1 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (1) =>
if not GLOBAL RECORD_FLAGS_F.PANELS5.LINE_3 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (2) =>
if not GLOBAL . RECORD_FLAGS_F.PANEL5.LINE_4 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (3) =>
if not GLOBAL RECORD_FLAGS_F.PANELS.LINE_S then
OKAY :=FALSE;
end if;
when ORGIN’VAL (4) =>
if not GLOBAL.RECORD_FLAGS_F.PANELS5.LINE_6 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (5) =>
if not GLOBAL.RECORD_FLAGS_F.PANELS5S.LINE_7 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (6) =>
if not GLOBAL RECORD_FLAGS_F.PANEL5.LINE_8 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (7) =>
if not GLOBAL RECORD_FLAGS_F.PANELS.LINE_9 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (8) =>
if not GLOBAL RECORD_FLAGS_F.PANELS5.LINE_10 then
OKAY :=FALSE;
end if;
when ORGIN’VAL (9) =>
if not GLOBAL RECORD_FLAGS_F.PANELSLINE_11 then

152

OKAY :=FALSE;
end if;
when ORGIN'VAL (10) =>
if not GLOBAL RECORD_FLAGS_F.PANELS.LINE_12 then
OKAY :=FALSE;
end if;
end case;

case IN_CURRENT_SETTINGS.FOURTH_ATTRIBUTE is
when USAGE'VAL (0) =>
if not GLOBAL RECORD_FLAGS_F.PANELG6.LINE _1 then
OKAY :=FALSE;
end if;
when USAGE’VAL (1) =>
if not GLOBAL RECORD_FLAGS_F.PANELG6.LINE_2 then
OKAY :=FALSE;
end if;
end case;

case IN_CURRENT_SETTINGS.FIFTH_ATTRIBUTE is
when DEVELOPMENT_STATUS’ VAL (0) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL9.LINE_1 then
OKAY :=FALSE;
end if;
when DEVELOPMENT_STATUS’VAL (1) =>
if not GLOBAL RECORD_FLAGS_F.PANEL9.LINE_2 then
OKAY :=FALSE;
end if;
when DEVELOPMENT_STATUS’VAL (2) =>
if not GLOBAL . RECORD_FLAGS_F.PANELY.LINE_3 then
OKAY :=FALSE;
end if;
when DEVELOPMENT_STATUS’VAL (3)=>
if not GLOBAL RECORD_FLAGS_F.PANEL9Y.LINE_4 then
OKAY :=FALSE;
end if:
when DEVELOPMENT_STATUS VAL (4) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL9.LINE_5 then
OKAY :=FALSE;
end if;
when DEVELOPMENT _STATUS’VAL (5) =>
if not GLOBAL RECORD_FLLAGS_F.PANEL9.LINE_6 then
OKAY :=FALSE;
end if;
when DEVELOPMENT_STATUS’VAL (6) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL9.LINE_7 then
OKAY :=FALSE;
end if;
when DEVELOPMENT_STATUS'VAL (7) =>
if not GLOBAL.RECORD_FLAGS_F.PANEL9.LINE_8 then
OKAY :=FALSE;

153

_

end if;
end case;

return OKAY;

end CHECKED_OKAY _F;

procedure PARSE_SPECIAL_LINE (LENGTH : in integer;
POINTER_! : in out positive;
RETURN_VALUE : outinteger;
PARSE_STRING : in out string) is

POINTER_2 : positive;

NOT_FOUND : boolean := FALSE;
PARSE_STRING_2 : string (1..20) := (others => * *);
TEMP_INT : integer;

begin

while not NOT_FOUND and POINTER_1 <= (LENGTH - 2) loop
if PARSE_STRING (POINTER_1 .. POINTER_1 + 3) = “ =>“then
POINTER_1 := POINTER_1 + 4;
POINTER_2 := POINTER_1 + 1;

while not NOT_FOUND and POINTER_2 <= LENGTH loop
if PARSE_STRING (POINTER_2) =", or
PARSE_STRING (POINTER_2)=** then
PARSE_STRING_2 (POINTER_1 - (POINTER_1-1)..
(POINTER_2 - POINTER_1))

:= PARSE_STRING (POINTER_1 .. POINTER_2 - 1);
TEMP_INT := integer' VALUE (PARSE_STRING_2);
RETURN_VALUE := TEMP_INT;

PARSE_STRING_2 := (others => * *);
NOT_FOUND := TRUE;
else
POINTER_2 := POINTER 2 + 1;
end if;
end loop;

else
POINTER_1 := POINTER_1 + 1;
end if;

end loop;

end PARSE_SPECIAL_LINE;

154

procedure PARSE_SPECIAL_COMMENT (IN_NUM : in integer;
IN_LENGTH : in integer;
IN_STRING : in string) is

TEMP_STRING : string (1 .. 1024) := IN_STRING:;

EXEC_TEMP,

DEC_TEMP,

PRAGMA_TEMP : natural :=0;
OFFSET 1 positive;
OFFSET_1 : positive ;= 13;
OFFSET_2 : positive := 26;

OLD_SETTINGS : CURRENT_SETTINGS_TYPE := CURRENT_SETTINGS;
begin

if IN_NUM < 0 then

OFFSET := OFFSET_1;

CURRENT _SETTINGS.SECOND_ATTRIBUTE := HOW_PRODUCED val (5);
else

OFFSET := OFFSET_2;

CURRENT_SETTINGS FIFTH_ATTRIBUTE := DEVELOPMENT_STATUS val (0);
end if;

if IN_LENGTH > 0 then

-- Now looking for the number associated with Executables
PARSE_SPECIAL_LINE (IN_LENGTH,

OFFSET,

EXEC_TEMP,

TEMP_STRING);

CURRENT_SETTINGS .FIRST_ATTRIBUTE := STMT_TYPE"val (0);
if CHECK_REPORT_A_E then

GLOBAL.DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS,

ADD_NUMBER => EXEC_TEMP);

end if;
if CHECK_REPORT_F then

if CHECKED_OKAY_F (CURRENT_SETTINGS) then

COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F, EXEC_TEMP),

end if;

end if;

-- Now need to find the number associated for Declarations
PARSE_SPECIAL_LINE (IN_LENGTH,

OFFSET,

DEC_TEMP,

TEMP_STRING);

CURRENT_SETTINGS .FIRST_ATTRIBUTE := STMT_TYPE'val (1);
if CHECK_REPORT_A_E then

155

GLOBAL.DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS,
ADD_NUMBER => DEC_TEMP);

end if;
if CHECK_REPORT_F then

if CHECKED_OKAY_F (CURRENT_SETTINGS) then

COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F, DEC_TEMP).

end if;

end if;

-- Now need to find the number associated for Compiler Directives
PARSE_SPECIAL_LINE (IN_LENGTH,

OFFSET,

PRAGMA_TEMP,

TEMP_STRING);

CURRENT_SETTINGS.FIRST_ATTRIBUTE := STMT_TYPE'val (2);
if CHECK_REPORT_A_E then
GLOBAL.DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS,
ADD_NUMBER => PRAGMA_TEMP);
end if;
if CHECK_REPORT_F then
if CHECKED_OKAY_F (CURRENT_SETTINGS) then
COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F, PRAGMA_TEMP);
end if;
end if;

CURRENT_SETTINGS := OLD_SETTINGS;
end if;

end PARSE_SPECIAL_COMMENT;

procedure DETERMINE_WHICH_ARRAY (IN_RECORD : in
CURRENT_SETTINGS_TYPE;
ADD_NUMBER :in natural:=1)is

begin

if RECORD_FLAGS.PANEL2 REPORT_A then
if CHECKED_OKAY_A (IN_RECORD) then
COUNT_LINE (IN_RECORD, COUNT_ARRAY_A, ADD_NUMBER);
end if;
end if;
if RECORD_FLLAGS.PANEL2.REPORT_B then
if CHECKED_OKAY_B (IN_RECORD) then

156

ﬁ

COUNT_LINE (IN_RECORD, COUNT_ARRAY_B, ADD_NUMBER),
end if;
end if;
if RECORD_FLAGS.PANEL2 REPORT_C then
if CHECKED_OKAY_C (IN_RECORD) then
COUNT_LINE (IN_RECORD, COUNT_ARRAY_C, ADD_NUMBER);
end if;
end if;

if RECORD_FLAGS.PANEL2.REPORT_D then
if CHECKED_OKAY_D (IN_RECORD) then
COUNT_LINE (IN_RECORD, COUNT_ARRAY_D, ADD_NUMBER);
end if;
end if;
if RECORD_FLAGS.PANEL2 REPORT_E then
if CHECKED_OKAY_E (IN_RECORD) then
COUNT_LINE (IN_RECORD, COUNT_ARRAY_E, ADD_NUMBER);
end if;
end if;

end DETERMINE_WHICH_ARRAY;

procedure COUNT_LINE (IN_RECORD :in CURRENT_SETTINGS_TYPE;
ARRAY_TYPE : in out COUNT_ARRAY_TYPE;
ADD_NUMBER :in natural := 1) is

TEMP : natural :=0;
begin

TEMP := ARRAY_TYPE (IN_RECORD.FIRST_ATTRIBUTE,
IN_RECORD.SECOND_ATTRIBUTE,
IN_RECORD.THIRD_ATTRIBUTE,
IN_RECORD FOURTH_ATTRIBUTE,

IN_RECORD.FIFTH_ATTRIBUTE);

TEMP := TEMP + ADD_NUMBER;

--put (“ +TEMP+");
--put (integer’image(temp));

ARRAY_TYPE (IN_RECORD FIRST_ATTRIBUTE,
IN_RECORD.SECOND_ATTRIBUTE,
IN_RECORD.THIRD_ATTRIBUTE,
IN_RECORD.FOURTH_ATTRIBUTE,
IN_RECORD FIFTH_ATTRIBUTE) := TEMP;

end COUNT_LINE;

157

procedure ADD_TO_ARRAY_A_E (IN_CURRENT_SETTINGS : in out
CURRENT_SETTINGS_TYPE) is

ADDED_TO_ARRAY : boolean := false;
begin
for I in PRIORITY_ARRAY_A_E'range loop
for J in STMT_TYPE loop

-- Found the statement type with the highest priority
-- Conditions:
-- Start flag is true, stop flag is true, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDED_TO_ARRAY to true; set the FIRST_ATTRIBUTE to the
-- current STATEMENT_TYPE (J); set both the
-- start and stop flag of the current statement type to false.
if PRIORITY_ARRAY_A _E(I)=1J and
FLAGS_ARRAY (J, 1) and
FLAGS_ARRAY (J,2) and
not (ADDED_TO_ARRAY) then

IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE :=J;
DETERMINE_WHICH_ARRAY (IN_RECORD => IN_CURRENT_SETTINGS);
ADDED_TO_ARRAY := true;

-- Found the statement type with the highest priority
-- that extends over two or more lines.
-- Conditions:
-- Stant flag is true, stop flag is false, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDED_TO_ARRAY to true; set the FIRST_ATTRIBUTE to the
-- current STATEMENT_TYPE (J);
elsif PRIORITY_ARRAY A_E(I)=J and
FLAGS_ARRAY (J,1) and
not FLAGS_ARRAY(J,2) and
not ADDED_TO_ARRAY then
IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE :=1J;
ADDED_TO_ARRAY := TRUE;
DETERMINE_WHICH_ARRAY (IN_RECORD => IN_CURRENT_SETTINGS);
end if;

end loop;

end loop;

158

e

end ADD_TO_ARRAY_A _E;

procedure ADD_TO_ARRAY_F (IN_CURRENT_SETTINGS : in out
CURRENT_SETTINGS_TYPE) is

ADDED_TO_ARRAY : boolean := false;
begin
for I in PRIORITY_ARRAY_F’range loop
for J in STMT_TYPE loop

-- Found the statement type with the highest priority

-- Conditions:
-- Start flag is true, stop flag is rue, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDED_TO_ARRAY to true; set the FIRST_ATTRIBUTE to the
-- current STATEMENT_TYPE (J); call the procedure COUNT_LINE
-- which will add this line to the total; set both the
-- start and stop flag of the current statement type to false.
if PRIORITY_ARRAY F(D)=J and

FLAGS_ARRAY (J,1) and
FLAGS_ARRAY (J,2) and
not (ADDED_TO_ARRAY) then

IN_CURRENT_SETTINGS FIRST _ATTRIBUTE :=]J;
if CHECKED_OKAY_F (IN_CURRENT_SETTINGS) then
GLOBAL.COUNT_LINE (IN_CURRENT_SETTINGS, COUNT_ARRAY_F);
end if;
ADDED_TO_ARRAY := true;

-- Found the statement type with the highest priority
-- that extends over two or more lines.
-- Conditions:
-- Start flag is true, stop flag is false, ADDED_TO_ARRAY is false.
-- Actions:
-- Set ADDED_TO_ARRAY to true; set the FIRST_ATTRIBUTE to the
-- current STATEMENT_TYPE (J); and call the procedure COUNT_LINE
-- which will add this line to the total.
elsif PRIORITY_ARRAY F () =] and
FLAGS_ARRAY (J,1) and
not FLAGS_ARRAY(J,2) and
not ADDED_TO_ARRAY then
IN_CURRENT_SETTINGS.FIRST_ATTRIBUTE :=1J;
ADDED_TO_ARRAY := TRUE;
if CHECKED_OKAY_F (IN_CURRENT_SETTINGS) then
GLOBAL.COUNT_LINE (IN_CURRENT_SETTINGS, COUNT_ARRAY_F);
end if;

159

end if;
end loop;
end loop;
end ADD_TO_ARRAY _F;

procedure ADD_TO_ARRAY is

CURRENT_SETTINGS_A _E,
CURRENT_SETTINGS_F :CURRENT_SETTINGS_TYPE := CURRENT_SETTINGS;

begin
if not SPECIAL_COMMENT then

if FLAGS_ARRAY (STMT_TYPE'val (0),1) and
not FLAGS_ARRAY (STMT_TYPE'val (0),2) then
EXECLEVEL := EXECLEVEL + 1;
elsif not FLAGS_ARRAY (STMT_TYPE’val (0), 1) and
FLAGS_ARRAY (STMT _TYPE'val (0),2) - then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
EXECLEVEL := EXECLEVEL - 1;
if EXECLEVEL < 0 then
put_line(“Warning: execution parsing is confused™);
end if;
elsif EXECLEVEL > 0 then
FLAGS_ARRAY (STMT_TYPE'val (0), 1) := TRUE;
else
null;
end if;

if FLAGS_ARRAY (STMT_TYPE’val(1),1) and
not FLAGS_ARRAY (STMT_TYPE'val (1),2) then
DECLEVEL := DECLEVEL + I;
elsif not FLAGS_ARRAY (STMT_TYPE'val (1), 1) and
FLAGS_ARRAY (STMT_TYPE'val (1), 2) then
FLAGS_ARRAY (STMT_TYPE'val (1), 1) := TRUE;
DECLEVEL := DECLEVEL - 1;
if DECLEVEL < (then
put_line(“Wamning: declaration parsing is confused”);
end if;
elsif DECLEVEL > 0 then
FLAGS_ARRAY (STMT_TYPE’val (1), 1) := TRUE;
else
null;
end if;

160

if FLAGS_ARRAY (STMT_TYPE’val (2),1) and
not FLAGS_ARRAY (STMT_TYPE’val (2),2) then
PRAGMALEVEL := PRAGMALEVEL + 1;
elsif not FLAGS_ARRAY (STMT_TYPE'val (2), 1) and
FLAGS_ARRAY (STMT_TYPE'val (2), 2) then
FLAGS_ARRAY (STMT_TYPE'val (2), 1) := TRUE;
PRAGMALEVEL := PRAGMALEVEL - 1;
elsif PRAGMALEVEL > O then
FLAGS_ARRAY (STMT_TYPE'val (2), 1) := TRUE;
else
null;
end if;
-- Debugging statements to help figure out the three
-- variables used to track multiline flags
--put (“[");
--put (integer’image(execlevel));
-put (“17);
--put (“I");
--put (integer’image(declevel));
--put (“17);
--put (“{");
--put (integer’image(pragmalevel));
—put (“I);

- Checking for full line code

if FLAGS_ARRAY (STMT_TYPE'val (3),1) then
CURRENT_SETTINGS.FIRST_ATTRIBUTE := STMT_TYPE'val (3);
DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS);

if CHECK_REPORT_F then
if CHECKED_OKAY_F (CURRENT_SETTINGS) then
GLOBAL.COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F);
end if;
end if;

elsif FLAGS_ARRAY (STMT_TYPE'val (5), 1) then
CURRENT_SETTINGS.FIRST_ATTRIBUTE := STMT_TYPE'val (5);
DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS);

if CHECK_REPORT _F then
if CHECKED_OKAY_F (CURRENT_SETTINGS) then
GLOBAL.COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F);
end if;
end if;

elsif FLAGS_ARRAY (STMT_TYPE'val (6), 1) then

CURRENT_SETTINGS.FIRST_ATTRIBUTE := STMT_TYPE'val (6);
DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS);

161

if CHECK_REPORT_F then
if CHECKED_OKAY_F (CURRENT _SETTINGS) then
GLOBAL.COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F);
end if:
end if;

elsif FLAGS_ARRAY (STMT_TYPE'val (7), 1) then
CURRENT_SETTINGS FIRST_ATTRIBUTE := STMT_TYPE'val (7),
DETERMINE_WHICH_ARRAY (IN_RECORD => CURRENT_SETTINGS);

if CHECK_REPORT_F then
if CHECKED_OKAY_F (CURRENT_SETTINGS) then
GLOBAL.COUNT_LINE (CURRENT_SETTINGS, COUNT_ARRAY_F);
end if;
end if;

else

if CHECK_REPORT_A_E then
ADD_TO_ARRAY_A_E (CURRENT_SETTINGS_A_E);
end if;
if CHECK_REPORT F then
ADD_TO_ARRAY_F (CURRENT_SETTINGS_F);
end if;
end if;
else
SPECIAL_COMMENT := FALSE:;
end if;
-- for insurance, clear appropriate flags before processing the next line
for i in STMT_TYPE first .. STMT_TYPE’last loop
FLAGS_ARRAY(lL,1) := FALSE;
FLAGS_ARRAY(1,2) := FALSE;

end loop;

end ADD_TO_ARRAY;

procedure INIT_RECORD_FLAGS is
begin

RECORD_FLAGS.PANEL6.DEL_OPTION (1)(my_value’range) := (others => *);
RECORD_FLAGS.PANEL6.DEL_OPTION (1)(1 .. 19) := “Delivered as source™;

end INIT_RECORD _FLAGS;

162

o

procedure INIT_RECORD_FLAGS_B is
begin

RECORD_FLAGS_B.PANEL4LINE_6 := TRUE;
RECORD_FLAGS_B.PANELY.LINE_3 := TRUE;
RECORD_FLAGS_B.PANEL9.LINE_4 := TRUE;
RECORD_FLAGS_B.PANEL9.LINE_5 := TRUE;
RECORD_FLAGS_B.PANEL9.LINE_6 := TRUE;
RECORD_FLAGS_B.PANELS.LINE_7 := TRUE;

end INIT_RECORD_FLAGS_B;

procedure INIT_RECORD_FLAGS_C is

begin
RECORD_FLAGS_C.PANEL3 LINE_6 := TRUE;
RECORD_FLAGS_C.PANEL3.LINE_7 := TRUE;
RECORD_FLAGS_C.PANEL4.LINE_6 := TRUE;

end INIT_RECORD_FLAGS_C;

procedure INIT RECORD_FLAGS_D is
begin

RECORD_FLAGS_D.PANELA4.LINE_6 := TRUE;

end INIT_RECORD_FLAGS_D;

procedure INIT_RECORD_FLAGS_E is

begin
RECORD_FLAGS_E.PANEL3.LINE_6 := TRUE,;
RECORD_FLAGS_E.PANEL3.LINE_7 := TRUE;
RECORD_FLAGS_E PANEIA.LINE_6 := TRUE;

end INIT_RECORD_FLAGS_E;

163

procedure INTT_RECORD_FLAGS _F is
begin

RECORD_FLAGS_F := RECORD_FLAGS

end INIT_RECORD_FLAGS_F;

begin

INIT_RECORD_FLAGS;

INIT_RECORD_FLAGS_B;
INIT_RECORD_FLAGS_C;
INIT_RECORD_FLAGS_D;
INIT_RECORD_FLAGS_E;
INIT_RECORD_FLAGS_F;

end Global;

.
13

164

o

COUNT_TOOL_PKG

~--*_Programmed

with GLOBAL,
TAE,
PARSER,
ADA_LEX_IO,
ADA_LEX,
REPORT_PACKAGE,
TEXT_IO;

use TAE,
TEXT_1O;

-

package TOOL_PACKAGE is

procedure SET_PRECEDENCE_F;
procedure SET_PRECEDENCE_A _E;

procedure START_COUNT;

end TOOL_PACKAGE;

--*_Programmed

package body TOOL_PACKAGE is

INITIAL _TYPE : GLOBAL.STMT_TYPE;
INITIAL_PRIORITY : TAE.TAEINT;

package TAE_INTEGER_IN_OUT is new integer_io (TAE.TAEINT),
use TAE_INTEGER IN_OUT;

package INTEGER_IN_OUT is new integer_io (integer);
use INTEGER_IN_OUT;

package ENUMERATION_IN_OUT is new ENUMERATION_IO (GLOBAL.STMT_TYPE);
use ENUMERATION_IN_OUT;

procedure DETERMINE_PRIORITY (A :in GLOBAL.STMT_TYPE;
B :in TAE.TAEINT;
C :in out GLOBAL.STMT_TYPE;

165

D :inout TAE.TAEINT) is
begin

if O > B and B /=0) or D=0 then
C:==A;

D:=B;

end if;

end DETERMINE_PRIORITY;

-

procedure SET_PRECEDENCE_F is
TEMP_TYPE : GLOBAL.STMT_TYPE;
begin
FOR I in GLOBAL.PRIORITY _ARRAY_F’range loop

INITIAL_TYPE := GLOBAL.STMT_TYPE val(0);
INITTAL _PRIORITY := GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_1_INT;

DETERMINE_PRIORITY (GLOBAL.STMT_TYPEval(0),
GLOBAL.RECORD_FLAGS_FPANEL3.LINE_I_INT,
INITIAL_TYPE,

INITIAL_PRIORITY});

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE'val(1),
GLOBAL . RECORD_FLAGS_F.PANEL3.LINE_3_INT,
INITIAL_TYPE,

INITIAL_PRIORITY);

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE’val(2),
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_4_INT,
INITIAL_TYPE,

INITIAL_PRIORITY);

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE'val(3),
GLOBAL RECORD_FLAGS_F.PANEL3.LINE_6_INT,
INITIAL_TYPE,

INITIAL _PRIORITY);

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE'val(4),
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_7_INT,
INITIAL_TYPE,

INITIAL_PRIORITY);

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE val(5),
GLOBAL RECORD_FLAGS_F.PANEL3.LINE_8_INT,
INITIAL_TYPE,

INITIAL_PRIORITY),

DETERMINE_PRIORITY (GLOBAL.STMT_TYPE’val(6),
GLOBAL.RECORD_FLAGS_FPANEL3.LINE_9_INT,
INITIAL_TYPE,

166

INITIAL_PRIORITY);
DETERMINE_PRIORITY (GLOBAL STMT_TYPE 'val(7),

GLOBAL.RECORD_FLAGS_F.PANEL3 LINE_10_INT,

INITIAL_TYPE,
INITIAL_PRIORITY);

case INITIAL_TYPE is
when GLOBAL.STMT_TYPE 'val(0) =>
new_line (2);
put (GLOBAL.STMT_TYPE val(0));
put (' is priority: *);
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_1_INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_1_INT:=0;
when GLOBAL.STMT_TYPE val(1) =>
put (GLOBAL.STMT_TYPE val(1));
put (* is priority: “};
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_3_INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3LINE_3_INT :=0;
when GLOBAL.STMT_TYPE val(2) =>
put (GLOBAL.STMT_TYPE’val(2));
put (“ is priority: “);
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_4_INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3LINE 4 _INT :=0;
when GLOBAL.STMT_TYPE val(3) =>
put (GLOBAL.STMT_TYPE’val(3));
put (* is priority: **);
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_6_INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_6_INT := 0;
when GLOBAL.STMT_TYPE'val(4) =>
put (GLOBAL.STMT_TYPE’val(4));
put (“ is priority: *);
put (GLOBAL . RECORD_FLAGS_F.PANEL3.LINE_7_INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_7_INT :=0;
when GLOBAL.STMT_TYPE'val(5) =>
put (GLOBAL.STMT_TYPE'val(5));
put (* is priority: *);
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_8_INT);
new_line;
GLOBAL.RECORD_FLAGS_FPANEL3.LINE_8 INT :=0;
when GLOBAL.STMT_TYPE'val(6) =>
put (GLOBAL.STMT_TYPE'val(6));
put (*“ is priority: *);
put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_9 INT);
new_line;
GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_9_INT :=0:
when GLOBAL.STMT_TYPE 'val(7) =>

167

- put (GLOBAL.STMT_TYPE’val(7));

- put (“ is priority: *);

- put (GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_10_INT);
- new_line (2);

GLOBAL.RECORD_FLAGS_F.PANEL3.LINE_10_INT :=0;
end case;

GLOBAL.PRIORITY_ARRAY_F (I) := INITIAL_TYPE;
end loop;

end SET_PRECEDENCE_F;

procedure SET_PRECEDENCE_A_E is
begin

GLOBAL.PRIORITY_ARRAY_A_E (1) := GLOBAL.STMT_TYPE'val(0);
GLOBAL.PRIORITY_ARRAY_A _E (2) := GLOBAL.STMT_TYPE'val(l);
GLOBAL.PRIORITY_ARRAY_A_E (3) := GLOBAL.STMT_TYPE’val(2);
GLOBAL.PRIORITY_ARRAY_A_E (4) := GLOBAL.STMT_TYPE’val(3);
GLOBAL.PRIORITY_ARRAY_A_E (5) := GLOBAL.STMT_TYPE’val(4);
GLOBAL.PRIORITY_ARRAY_A_E (6) := GLOBAL.STMT_TYPE’val(5);
GLOBAL.PRIORITY_ARRAY_A_E (7) := GLOBAL.STMT_TYPE’val(6);
GLOBAL.PRIORITY_ARRAY_A_E (8) := GLOBAL.STMT TYPE'val(7).

end SET_PRECEDENCE_A_E;

procedure GET_FILE_NAME (OUT_FILE_NAME : out string;
OUT_NAME_LENGTH: out integer;
F : in out file_type) is

TEMP_NUMBER : integer:=0;
TEMP_NAME : string (1 .. 80) := (others=> * *);
NOT_BLANK : boolean := TRUE;

begin

if not end_of_file (F) then
get_line (F, TEMP_NAME, TEMP_NUMBER);

while NOT_BLANK loop

if TEMP_NAME (TEMP_NUMBER) = * * then
TEMP_NUMBER := TEMP_NUMBER - 1;

168

else
NOT_BLANK := FALSE;
end if;
end loop;

end if;

OUT_FILE_NAME := TEMP_NAME;
OUT_NAME_LENGTH := TEMP_NUMBER;

--put (“the name of the file to opened is: *);
--put_line (temp_name);

--put (“the file name is this long: *);

--put (temp_number, width => 3);
--new_line;

end GET_FILE_NAME;

procedure START_PARSE is

IS_FILELIST : boolean;

FILELIST : GLOBAL.MY_VALUE := GLOBALRECORD_FLAGS.
PANEL2.IN_FILE_NAME;

LENGTH : integer;

FILE_NAME : string(1..80);

LAST . integer ;= (;

FILE_LIST NAME : string (1..1024) := (others => * *);

F : file_type;

begin

LENGTH := GLOBAL.FIND_LENGTH (FILELIST);
FILE_LIST_NAME(1..LENGTH) := FILELIST (1) (1.LENGTH);
open (F, in_file, FILE_LIST_NAME (1.LENGTH));
while not END_OF_FILE (F) loop

GET_FILE_NAME (FILE_NAME, LAST, F);

ADA_LEX_10.OPEN_INPUT (FILE_NAME (1..LAST));
ADA _LEX_10.CREATE_OUTPUT;

new_line;

put_line (“ Starting parse *);
ADA_LEX linenum;
PARSER .yyparse;

169

e

new_line;
put_line (Finished parse *);

ADA_LEX_1O0.CLOSE_INPUT;
ADA_LEX_1O0.CLOSE_OUTPUT;

end loop;

end START_PARSE;

procedure START_COUNT is
begin
SET_PRECEDENCE_A_E;
if GLOBAL .RECORD_FLAGS PANEL2.REPORT_F then
SET_PRECEDENCE_F;
end if;
GLOBAL.OPEN_OUT_FILE;
START_PARSE;
REPORT_PACKAGE.DETERMINE_WHICH_REPORT;
end START_COUNT;

end TOOL_PACKAGE;

170

-

REPORT PKG_S.A

--*_Programmed

with GLOBAL,
TAE,
TEXT_IO,
GENERIC_COUNTS;
use TAE,
GLOBAL,
TEXT_IO;

package REPORT_PACKAGE is

type TYPE_NUMBER_TYPE isrange 1 .. 5;
T2_NUMBER :TYPE_NUMBER_TYPE;

type NAME_REPORT_TYPE is (REPORT_A, REPORT_B, REPORT_C,
REPORT_D, REPORT_E, REPORT_F);
REPORT_NAME : NAME_REPORT_TYPE;

procedure DETERMINE_WHICH_REPORT;

function RETRIEVE_2D_1 (TYPE_1 : STMT_TYPE;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : ORGIN;
TYPE_4 : USAGE;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_2 (TYPE_1 : STMT_TYPE;
TYPE_2 : USAGE;
TYPE_3 : HOW_PRODUCED;
TYPE_4 : ORGIN;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D 3 (TYPE_1 : ORGIN;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : STMT_TYPE;
TYPE_4 : USAGE;
TYPE_5 : DEVELOPMENT _STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_4 (TYPE_1 : ORGIN;

TYPE_2 : STMT_TYPE;
TYPE_3 : HOW_PRODUCED;

17

TYPE_4 : USAGE;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_S (TYPE_1 : ORGIN;
TYPE_2 : USAGE;
TYPE_3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;
TYPE_5 : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_6 (TYPE_1 : ORGIN;
TYPE_2 : DEVELOPMENT_STATUS;
TYPE_3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;
TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_7 (TYPE_1 : USAGE;
TYPE_2 . HOW_PRODUCED:;
TYPE_ 3 : STMT_TYPE;
TYPE_4 : ORGIN;
TYPE_5 : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_8 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : STMT_TYPE,
TYPE_3 : HOW_PRODUCED;
TYPE_4 : ORGIN;
TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_9 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : USAGE;
TYPE_3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;
TYPE_S : ORGIN;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_2D_10 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : STMT_TYPE;
TYPE_4 : ORGIN;
TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural;

function RETRIEVE_3D_1 (TYPE_1 : USAGE;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : ORGIN;
TYPE_4 : STMT_TYPE;
TYPE_5 : DEVELOPMENT_STATUS;

172

TYPE_6 : NAME_REPORT_TYPE) return natural;
function RETRIEVE_3D_2 (TYPE_1 : USAGE;

TYPE_2 : HOW_PRODUCED;,

TYPE_3 : DEVELOPMENT_STATUS;

TYPE_4 : ORGIN;

TYPE_S : STMT_TYPE;

TYPE_6 : NAME_REPORT_TYPE) retum natural;
function RETRIEVE_3D_3 (TYPE_1 : DEVELOPMENT_STATUS;

TYPE_2 : HOW_PRODUCED:;

TYPE_3 : ORGIN;

TYPE_4 : STMT_TYPE;

TYPE_S : USAGE;

TYPE_6 : NAME_REPORT_TYPE) return natural;
function RETRIEVE_3D_4 (TYPE_1 : DEVELOPMENT_STATUS;

TYPE_2 : USAGE;

TYPE_3 : ORGIN;

TYPE_4 : HOW_PRODUCED;

TYPE_S : STMT_TYPE;

TYPE_6 : NAME_REPORT_TYPE) return natural;
function CHECK_2D_1 retumm TYPE_NUMBER_TYPE;
function CHECK_2D_2 return TYPE_NUMBER_TYPE;
function CHECK_2D_3 return TYPE_NUMBER_TYPE;
function CHECK_2D_4 return TYPE_NUMBER_TYPE;
function CHECK_3D_1 return TYPE_NUMBER_TYPE;
function CHECK_3D_2 return TYPE_NUMBER_TYPE;
function CHECK_3D_3 return TYPE_NUMBER_TYPE;
function CHECK _3D_4 return TYPE_NUMBER_TYPE;
procedure HEADING_STMT_TYPE (ROW_POSITION : positive);
procedure HEADING_ORGIN (ROW_POSITION : positive);
procedure HEADING_USAGE (ROW_POSITION : positive);
procedure HEADING_DEV_STATUS (ROW_POSITION : positive);

package INTEGER_IN_OUT is new integer_io (integer);
use INTEGER_IN_OUT;

package ENUMERATION_IN_OUT is new ENUMERATION_IO (STMT_TYPE);

173

use ENUMERATION_IN_OUT;

package RETRIEVE_1_2D is new GENERIC_COUNTS (FIRST_TYPE => STMT_TYPE,
SECOND_TYPE => HOW_PRODUCED,
THIRD_TYPE => ORGIN,
FOURTH_TYPE =>USAGE,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_2D_1,
CHECK TYPE_2 =>CHECK_2D_},
CHECK_TYPE_3 =>CHECK_ 3D_l,
PRINT_ROW_HEADING => HEADING_STMT_TYPE),

package RETRIEVE_2_2D is new GENERIC_COUNTS (FIRST_TYPE => STMT_TYPE,
SECOND_TYPE =>USAGE,
THIRD_TYPE => HOW_PRODUCED,
FOURTH_TYPE =>ORGIN,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_2D_2,
CHECK_TYPE_2 =>CHECK_2D_3,
CHECK_TYPE_3 =>CHECK_3D_1,
PRINT_ROW_HEADING => HEADING_STMT_TYPE);

package RETRIEVE_3_2D is new GENERIC_COUNTS (FIRST_TYPE => ORGIN,
SECOND_TYPE =>HOW_PRODUCED,
THIRD_TYPE => STMT_TYPE,
FOURTH_TYPE =>USAGE,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D_3,
CHECK_TYPE_2 =>CHECK_2D_1,
CHECK_TYPE_3 =>CHECK_3D_2,
PRINT_ROW_HEADING => HEADING_ORGIN);

package RETRIEVE_4_2D is new GENERIC_COUNTS (FIRST_TYPE => ORGIN,
SECOND_TYPE =>STMT_TYPE,
THIRD_TYPE => HOW_PRODUCED,
FOURTH_TYPE =>USAGE,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D_4,
CHECK_TYPE_2 =>CHECK_2D_2,
CHECK_TYPE_3 =>CHECK_3D_3,
PRINT_ROW_HEADING => HEADING_ORGIN);

package RETRIEVE_5_2D is new GENERIC_COUNTS (FIRST_TYPE => ORGIN,

174

SECOND_TYPE => USAGE,

THIRD_TYPE => STMT_TYPE,
FOURTH_TYPE => HOW_PRODUCED,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_2D_S,
CHECK_TYPE_2 =>CHECK_2D 3,
CHECK_TYPE_3 =>CHECK_3D_2,
PRINT_ROW_HEADING => HEADING_ORGIN);

package RETRIEVE_6_2D is new GENERIC_COUNTS (FIRST_TYPE => ORGIN,
SECOND_TYPE => DEVELOPMENT_STATUS,
THIRD_TYPE => STMT_TYPE,
FOURTH_TYPE =>HOW_PRODUCED,
FIFTH_TYPE =>USAGE,
REPORT TYPE =>NAME_REPORT TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D_6,
CHECK_TYPE_2 =>CHECK_2D_4,
CHECK_TYPE_3 =>CHECK_3D_2,
PRINT_ROW_HEADING => HEADING_ORGIN);

package RETRIEVE_7_2D is new GENERIC_COUNTS (FIRST_TYPE => USAGE,
SECOND_TYPE =>HOW_PRODUCED,
THIRD_TYPE => STMT_TYPE,
FOURTH_TYPE =>ORGIN,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_2D_17,
CHECK_TYPE_2 =>CHECK_2D_l],
CHECK_TYPE_3 =>CHECK_3D_2,
PRINT_ROW_HEADING => HEADING_USAGE);

package RETRIEVE_8_2D is new GENERIC_COUNTS (FIRST_TYPE =>

DEVELOPMENT_STATUS,
SECOND_TYPE =>STMT_TYPE,
THIRD_TYPE => HOW_PRODUCED,
FOURTH_TYPE =>ORGIN,
FIFTH_TYPE =>USAGE,
REPORT TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D_8,
CHECK_TYPE_2 =>CHECK_2D_2,
CHECK_TYPE_3 =>CHECK_3D_3,
PRINT_ROW_HEADING => HEADING_DEV_STATUS);

package RETRIEVE_9_2D is new GENERIC_COUNTS (FIRST_TYPE =>

DEVELOPMENT_STATUS,
SECOND_TYPE => USAGE,

175

THIRD_TYPE => STMT_TYPE,

FOURTH_TYPE =>HOW_PRODUCED,
FIFTH_TYPE => ORGIN,

REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D 9,

CHECK_TYPE_2 =>CHECK_2D_3,

CHECK_TYPE_3 =>CHECK_3D_2,
PRINT_ROW_HEADING => HEADING_DEV_STATUS);

package RETRIEVE_10_2D is new GENERIC_COUNTS (FIRST_TYPE =>
DEVELOPMENT_STATUS,

SECOND_TYPE =>HOW_PRODUCED,
THIRD_TYPE => STMT_TYPE,
FOURTH_TYPE =>ORGIN,
FIFTH_TYPE =>USAGE,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE => RETRIEVE_2D_10,
CHECK_TYPE_2 =>CHECK_2D_l,
CHECK_TYPE_3 =>CHECK_ 3D_2,
PRINT_ROW_HEADING => HEADING_DEV_STATUS);

package RETRIEVE_1_3D is new GENERIC_COUNTS (FIRST_TYPE =>USAGE,
SECOND_TYPE =>HOW_PRODUCED,
THIRD_TYPE =>ORGIN,
FOURTH_TYPE =>STMT_TYPE,
FIFTH_TYPE => DEVELOPMENT_STATUS,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_3D_1,
CHECK_TYPE_2 =>CHECK_2D_1,
CHECK_TYPE_3 =>CHECK_3D_],
PRINT_ROW_HEADING => HEADING_USAGE);

package RETRIEVE_2_3D is new GENERIC_COUNTS (FIRST_TYPE = => USAGE,
SECOND_TYPE =>HOW_PRODUCED,
THIRD_TYPE =>DEVELOPMENT_STATUS,
FOURTH_TYPE =>ORGIN,
FIFTH_TYPE =>STMT_TYPE,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_3D_2,
CHECK_TYPE_2 =>CHECK_2D_1,
CHECK TYPE_3 =>CHECK 3D_4,
PRINT_ROW_HEADING => HEADING_USAGE);

package RETRIEVE_3_3D is new GENERIC_COUNTS (FIRST_TYPE =>
DEVELOPMENT_STATUS,
SECOND_TYPE => HOW_PRODUCED,
THIRD_TYPE => ORGIN,

176

package RETRIEVE_4_3D is new GENERIC_COUNTS (FIRST_TYPE

FOURTH_TYPE =>STMT_TYPE,
FIFTH_TYPE => USAGE,

REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_3D_3,
CHECK_TYPE_2 =>CHECK_2D_]l,
CHECK_TYPE_3 =>CHECK_3D_},

PRINT_ROW_HEADING => HEADING_DEV_STATUS);

=>

DEVELOPMENT_STATUS,

end REPORT_PACKAGE;

SECOND_TYPE =>USAGE,

THIRD_TYPE => ORGIN,

FOURTH_TYPE => HOW_PRODUCED,
FIFTH_TYPE => STMT_TYPE,
REPORT_TYPE =>NAME_REPORT_TYPE,
T_NUMBER_TYPE =>TYPE_NUMBER_TYPE,
RETRIEVE =>RETRIEVE_3D_4,
CHECK_TYPE_2 =>CHECK_2D_3,
CHECK_TYPE_3 =>CHECK_3D_l,

PRINT_ROW_HEADING => HEADING_DEV_STATUS);

177

REPORT PKG_B.A

--*_Programmed

-

package body REPORT_PACKAGE is

function CNT_EST (D : in DEVELOPMENT_STATUS;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin
for S in STMT_TYPE'FIRST .. STMT_TYPE'LAST loop
for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’'LAST loop

for O in ORGIN’FIRST .. ORGIN’LAST loop
for U in USAGE’FIRST .. USAGE'LAST loop

TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S, H, O, U, D);

end loop;

end loop;
end loop;
end loop;

return TEMP_COUNT;

end CNT_EST;

function RETRIEVE_2D_1 (TYPE_1 : STMT _TYPE,;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : ORGIN;
TYPE_4 : USAGE;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_ 6 is

178

pr——

when REPORT_A =>

TEMP := COUNT_ARRAY_A (TYPE_1, TYPE_2, TYPE_3, TYPE_4, TYPE 5);
when REPORT_B =>

TEMP = COUNT_ARRAY_B (TYPE_1, TYPE_2, TYPE_3, TYPE 4, TYPE_5);
when REPORT_C =>

TEMP := COUNT_ARRAY _C (TYPE_1, TYPE_2, TYPE_3, TYPE_4, TYPE_S5);
when REPORT_D =>

TEMP := COUNT_ARRAY_D (TYPE_1, TYPE_2, TYPE_3, TYPE_4, TYPE_S);
when REPORT_E =>

TEMP := COUNT_ARRAY _E (TYPE_1, TYPE_2, TYPE_3, TYPE_4, TYPE_5);
when REPORT_F =>

TEMP := COUNT_ARRAY_F (TYPE_1, TYPE_2, TYPE_3, TYPE_4, TYPE_S);

end case;

return TEMP;

end RETRIEVE_2D_1;

-

function RETRIEVE_2D_2 (TYPE_1 : STMT_TYPE;
TYPE_2 : USAGE;
TYPE_3 : HOW_PRODUCED;
TYPE_4 : ORGIN;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_1, TYPE_3, TYPE_4, TYPE_2, TYPE_5);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_I, TYPE_ 3, TYPE_4, TYPE_2, TYPE_5);
when REPORT_C =>
TEMP := COUNT_ARRAY_C (TYPE_1, TYPE_3, TYPE_4, TYPE_2, TYPE_5);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_1, TYPE_3, TYPE_4, TYPE_2, TYPE_5);
when REPORT _E =>
TEMP := COUNT_ARRAY E (TYPE_1, TYPE_3, TYPE_4, TYPE_2, TYPE_5);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_1, TYPE_3, TYPE_4, TYPE 2, TYPE_5);
end case;

retumn TEMP;

end RETRIEVE_2D_2;

179

function RETRIEVE_2D_3 (TYPE_1 : ORGIN;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : STMT_TYPE;
TYPE_4 : USAGE;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_S);
when REPORT_B =>
TEMP := COUNT_ARRAY B (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_5);
when REPORT_C =>
TEMP .= COUNT_ARRAY_C (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_5);
when REPORT_D =>
TEMP = COUNT_ARRAY _D (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_S);
when REPORT_E =>
TEMP := COUNT_ARRAY_E (TYPE_3, TYPE_2, TYPE_1, TYPE_4, TYPE_S);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_3, TYPE_2, TYPE_}, TYPE_4, TYPE_S),
end case;

return TEMP;

end RETRIEVE_2D_3;

-

function RETRIEVE_2D_4 (TYPE_1 : ORGIN;
TYPE_2 : STMT_TYPE;
TYPE_3 : HOW_PRODUCED;
TYPE_4 : USAGE;
TYPE_5 : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT _TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6 is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_S);
when REPORT_B =>
TEMP := COUNT_ARRAY_P (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_5);
when REPORT_C =>

180

TEMP := COUNT_ARRAY_C (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_S);
when REPORT_D =>

TEMP := COUNT_ARRAY_D (TYPE_2, TYPE_ 3, TYPE_l, TYPE_4, TYPE_S);
when REPORT_E =>

TEMP := COUNT_ARRAY _E (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_S);
when REPORT_F =>

TEMP = COUNT_ARRAY_F (TYPE_2, TYPE_3, TYPE_1, TYPE_4, TYPE_S);

end case;

return TEMP;
end RETRIEVE_2D_4;

function RETRIEVE_2D_5 (TYPE_1 : ORGIN;
TYPE_2 : USAGE;
TYPE_3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) retumn natural is

TEMP : natural :=0;
begin

case TYPE_6 is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_3, TYPE_4, TYPE_1, TYPE_2, TYPE_S);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_3, TYPE_4, TYPE_1, TYPE_2, TYPE_S);
when REPORT _C =>
TEMP ;= COUNT_ARRAY_C (TYPE_3, TYPE_4, TYPE_1, TYPE_2, TYPE_5);
when REPORT_D =>
TEMP ;= COUNT_ARRAY_D (TYPE_3,TYPE 4, TYPE_1, TYPE_2, TYPE_S);
when REPORT_E =>
TEMP := COUNT_ARRAY _E (TYPE_3, TYPE_4, TYPE_I, TYPE_2, TYPE_S);
when REPORT_F =>
TEMP := COUNT_ARRAY _F (TYPE_3, TYPE_4, TYPE_1, TYPE 2, TYPE_5);
end case;

return TEMP;

end RETRIEVE_2D_S;

function RETRIEVE_2D_6 (TYPE_1 : ORGIN;
TYPE_2 : DEVELOPMENT_STATUS;
TYPE_3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;

181

TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_3, TYPE_ 4, TYPE_1, TYPE_S, TYPE_ 2);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_3, TYPE 4, TYPE_1, TYPE_S5, TYPE_ 2);
when REPORT_C =>
TEMP := COUNT_ARRAY_C (TYPE_3, TYPE_4, TYPE_1, TYPE_5, TYPE_2);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_3, TYPE_4, TYPE_1, TYPE_5, TYPE_ 2);
when REPORT_E =>
TEMP := COUNT_ARRAY_E (TYPE_3, TYPE_4, TYPE_1, TYPE_S, TYPE_2);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_3, TYPE 4, TYPE_1, TYPE_5, TYPE_2);
end case;

return TEMP;
end RETRIEVE_2D_6;

function RETRIEVE_2D_7 (TYPE_1 : USAGE;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : STMT_TYPE;
TYPE_4 : ORGIN;
TYPE_5 : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) retumn natural is

TEMP : natural :=0;
begin

case TYPE_6is

when REPORT_A =>

TEMP := COUNT_ARRAY_A (TYPE_3, TYPE_2, TYPE_4, TYPE_1, TYPE_5);
when REPORT_B =>

TEMP := COUNT_ARRAY_B (TYPE_3, TYPE_2, TYPE 4, TYPE_1, TYPE_S);
when REPORT_C =>

TEMP := COUNT_ARRAY_C (TYPE_3, TYPE_2, TYPE 4, TYPE_I, TYPE_S);
when REPORT_D =>

TEMP := COUNT_ARRAY_D (TYPE_3, TYPE_2, TYPE_4, TYPE_1, TYPE_S);
when REPORT_E =>

TEMP := COUNT_ARRAY_E (TYPE_3, TYPE_2, TYPE_4, TYPE_1, TYPE_5);
when REPORT_F =>

182

TEMP = COUNT_ARRAY_F (TYPE_3, TYPE_2, TYPE_4, TYPE_1, TYPE_S);
end case;

return TEMP;
end RETRIEVE_2D 7,

function RETRIEVE_2D_8 (TYPE_! : DEVELOPMENT_STATUS;
TYPE_2 : STMT_TYPE;
TYPE_3 : HOW_PRODUCED;
TYPE_4 : ORGIN;
TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : ratural:=0;
begin

case TYPE_6 is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_2, TYPE_3, TYPE_4, TYPE_5, TYPE_1);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_2, TYPE_3, TYPE_4, TYPE_S, TYPE_1);
when REPORT_C =>
TEMP := COUNT_ARRAY_ _C (TYPE_2, TYPE_3, TYPE_4, TYPE_S, TYPE_1);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_2, TYPE_3, TYPE_4, TYPE_S, TYPE_1);
when REPORT_E =>
TEMP := COUNT_ARRAY_E (TYPE_2, TYPE_3, TYPE_4, TYPE_S, TYPE_1);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_2, TYPE_3, TYPE_4, TYPE_S5, TYPE_1);
end case;

return TEMP;

end RETRIEVE_2D_8;

function RETRIEVE_2D_9 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : USAGE;
TYPE 3 : STMT_TYPE;
TYPE_4 : HOW_PRODUCED;
TYPE_S : ORGIN;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;

begin

183

case TYPE 6 is
when REPORT_A =>
TEMP .= COUNT_ARRAY_A (TYPE_3, TYPE_4, TYPE_ 5, TYPE_2, TYPE_1);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_3, TYPE_4, TYPE_S5, TYPE_2, TYPE_1);
when REPORT_C =>
TEMP = COUNT_ARRAY_C (TYPE_3, TYPE_ 4, TYPE_S, TYPE_2, TYPE_1);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_3, TYPE_4, TYPE_S, TYPE_2, TYPE_1);
when REPORT_E =>
TEMP = COUNT_ARRAY_E (TYPE_3, TYPE_4, TYPE_S, TYPE_2, TYPE_1);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_3, TYPE_4, TYPE_S, TYPE_2, TYPE_1);
end case;

return TEMP;

end RETRIEVE_2D_9;

function RETRIEVE_2D_10(TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : STMT_TYPE;
TYPE_4 : ORGIN;
TYPE_5 : USAGE;
TYPE_6 : NAME_REPORT TYPE) return natural is

TEMP : natural :=0:
begin

case TYPE_6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_3.TYPE_2, TYPE_4, TYPE_S5, TYPE_1);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_3, TYPE_2, TYPE_4, TYPE_S, TYPE_1);
when REPORT_C =>
TEMP := COUNT_ARRAY_C (TYPE_3, TYPE_2, TYPE_4, TYPE_5, TYPE_1);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_3, TYPE_2, TYPE_4, TYPE_S, TYPE_1);
when REPORT_E =>
TEMP := COUNT_ARRAY _E (TYPE_3, TYPE_2, TYPE_4, TYPE_S, TYPE_1);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_3, TYPE_2, TYPE_4, TYPE_S, TYPE_1);
end case;

return TEMP;

end RETRIEVE_2D_10:

184

function RETRIEVE_3D_1 (TYPE_1 : USAGE;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : ORGIN;
TYPE_4 : STMT_TYPE;
TYPE_S : DEVELOPMENT_STATUS;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6 is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_5);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_S);
when REPORT_C =>
TEMP := COUNT_ARRAY_C (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_S);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_S);
when REPORT_E =>
TEMP := COUNT_ARRAY_E (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_S);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_4, TYPE_2, TYPE_3, TYPE_1, TYPE_S);
end case;

return TEMP;

end RETRIEVE_3D_1;

function RETRIEVE_3D_2 (TYPE_1 : USAGE;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : DEVELOPMENT_STATUS;
TYPE_4 : ORGIN;
TYPE_S : STMT_TYPE;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin
case TYPE_6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_S, TYPE_2, TYPE_4, TYPE_1, TYPE_3);

when REPORT_B =>
TEMP := COUNT_ARRAY B (TYPE_5, TYPE_2, TYPE 4, TYPE_1, TYPE_3);

185

when REPORT_C =>

TEMP ;= COUNT_ARRAY_C (TYPE_S, TYPE_2, TYPE_4, TYPE_1, TYPE_3);
when REPORT_D =>

TEMP := COUNT_ARRAY_D (TYPE_S, TYPE_2, TYPE_4, TYPE_I, TYPE_3);
when REPORT _E =>

TEMP := COUNT_ARRAY _E (TYPE_S, TYPE_2, TYPE 4, TYPE_1, TYPE_3);
when REPORT_F =>

TEMP := COUNT_ARRAY _F (TYPE_S, TYPE_2, TYPE_4, TYPE_1, TYPE_3);

end case;

retun TEMP;

end RETRIEVE_3D_2;

function RETRIEVE_3D_3 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : HOW_PRODUCED;
TYPE_3 : ORGIN;
TYPE_ 4 : STMT_TYPE;
TYPE_S : USAGE;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE 6is
when REPORT_A =>
TEMP := COUNT_ARRAY_A (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_I);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_1);
when REPORT _C =>
TEMP := COUNT_ARRAY_C (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_1);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_l);
when REPORT _E =>
TEMP := COUNT_ARRAY _E (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_1);
when REPORT _F =>
TEMP := COUNT_ARRAY_F (TYPE_4, TYPE_2, TYPE_3, TYPE_S, TYPE_1):
end case;

return TEMP;

end RETRIEVE_3D_3;

function RETRIEVE_3D_4 (TYPE_1 : DEVELOPMENT_STATUS;
TYPE_2 : USAGE;
TYPE_3 : ORGIN;

186

TYPE_4 : HOW_PRODUCED;
TYPE_S : STMT_TYPE;
TYPE_6 : NAME_REPORT_TYPE) return natural is

TEMP : natural :=0;
begin

case TYPE_6is
when REPORT_A =>
TEMP = COUNT_ARRAY_A (TYPE_S, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
when REPORT_B =>
TEMP := COUNT_ARRAY_B (TYPE_S, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
when REPORT_C =>
TEMP := COUNT_ARRAY_C (TYPE_S, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
when REPORT_D =>
TEMP := COUNT_ARRAY_D (TYPE_S, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
when REPORT_E =>
TEMP := COUNT_ARRAY_E (TYPE_5, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
when REPORT_F =>
TEMP := COUNT_ARRAY_F (TYPE_5, TYPE_4, TYPE_3, TYPE_2, TYPE_1);
end case;

return TEMP;

end RETRIEVE_3D_4;

function CHECK _2D_1 return TYPE_NUMBER_TYPE is
T2_NUMBER : TYPE_NUMBER _TYPE :=|;
begin

retum T2_NUMBER;

end CHECK 2D_1;

function CHECK_2D_2 return TYPE_NUMBER_TYPE is
T2_NUMBER : TYPE_NUMBER_TYPE :=2;
begin

return T2_NUMBER;
end CHECK 2D _2;

-

function CHECK _2D_3 return TYPE_NUMBER _TYPE is
T2_NUMBER : TYPE_NUMBER_TYPE :=3;

187

begin
return T2_NUMBER;
end CHECK_2D_3;

-

function CHECK_2D_4 return TYPE_NUMBER_TYPE is
T2_NUMBER : TYPE_NUMBER _TYPE :=4;
begin

return T2_NUMBER;

end CHECK 2D_4;

-

function CHECK_3D_1 return TYPE_NUMBER_TYPE is
T3_NUMBER : TYPE_NUMBER _TYPE :=$§;
begin

retumn T3_NUMBER;

end CHECK 3D_1;

function CHECK _3D_2 return TYPE_NUMBER_TYPE is
T3_NUMBER : TYPE_NUMBER_TYPE :=2;
begin

return T3_NUMBER;

end CHECK_3D_2;

function CHECK_3D_3 reurn TYPE_NUMBER_TYPE is
T3_NUMBER : TYPE_NUMBER_TYPE :=1;
begin

return T3_NUMBER;

end CHECK_3D_3;

function CHECK_3D_4 return TYPE_NUMBER_TYPE is
T3_NUMBER : TYPE_NUMBER_TYPE :=4;
begin

188

return T3_NUMBER;
end CHECK_3D_4;

-

procedure HEADING_STMT_TYPE (ROW_POSITION
TEMP : integer := ROW_POSITION - 1;
begin

if TEMP =0 then
put (OUT_FILE_TYPE, “Executable “);

elsif TEMP = 1 then
put (OUT_FILE_TYPE, “Declarations *);

elsif TEMP = 2 then
put_line (OUT_FILE_TYPE, “Compiler dir- “¥
put (OUT_FILE_TYPE, “ectives “Y;

elsif TEMP = 3 then
put_tine (OUT_FILE_TYPE, “Comments on “)
put (OUT_FILE_TYPE, “their own line *);

elsif TEMP =4 then
put_line (OUT_FILE_TYPE, “Comments on “Y,
put_line (OUT_FILE_TYPE, “lines with “Y
put (OUT_FILE_TYPE, “source code “);

elsif TEMP = 5 then
put_line (OUT_FILE_TYPE, “Banner and non-");
put (OUT_FILE_TYPE, “blank spacers “);

elsif TEMP = 6 then
put_line (OUT_FILE_TYPE, “Blank (empty) “);
put (OUT_FILE_TYPE, “comments ~ “);

elsif TEMP = 7 then
put (OUT_FILE_TYPE, “Blank lines “);

end if;

end HEADING_STMT_TYPE;

: positive) is

procedure HEADING_ORGIN (ROW_POSITION : positive) is

TEMP : integer := ROW_POSITION - 1;
begin
if TEMP = 0 then
put_line (OUT_FILE_TYPE, “New Work: no *);

put (OUT_FILE_TYPE, “prior existence™);
elsif TEMP = 1 then

189

put_line (OUT_FILE_TYPE, “A previos ver- “);
put_line (OUT_FILE_TYPE, “sion, build, *);
put (OUT_FILE_TYPE, “orrelease *);

elsif TEMP = 2 then
put (OUT_FILE_TYPE, “COTS %

elsif TEMP = 3 then
put (OUT_FILE_TYPE, “GFS “¥

elsif TEMP = 4 then
put (OUT_FILE_TYPE, “Another product”™);

elsif TEMP = 5 then
put_line (OUT_FILE_TYPE, “A vendor suppl-");
put_line (OUT_FILE_TYPE, “ied language *);
put (OUT_FILE_TYPE, “support library”);

elsif TEMP = 6 then
put_line (OUT_FILE_TYPE, “A vendor-suppl-");
put_line (OUT_FILE_TYPE, “ied operating “);
put_line (OUT_FILE_TYPE, “systemor “);
put (OUT_FILE_TYPE, “utility)%

elsif TEMP = 7 then
put_line (OUT_FILE_TYPE, “A local or mod-");
put_line (QUT_FILE_TYPE, “ified language “);
put_line (OUT_FILE_TYPE, “support library”™);
put_line (OUT_FILE_TYPE, “ or operating “);
put (OUT_FILE_TYPE, “system “Y;

elsif TEMP = 8 then
put_line (OUT_FILE_TYPE, “Other commer- *);
put (OUT_FILE_TYPE, “cial library *);

elsif TEMP = 9 then
put_line (OUT_FILE_TYPE, “A reuse library™);
put_line (QUT_FILE_TYPE, “(software *);
put_line (OUT_FILE_TYPE, “designed for *);
put (OUT_FILE_TYPE, “reuse “¥%

elsif TEMP = 10 then
put_line (QUT_FILE_TYPE, “Other software “);
put_line (OUT_FILE_TYPE, “component or “);
put (OUT_FILE_TYPE, “library),

end if;

end HEADING_ORGIN;

procedure HEADING_USAGE (ROW_POSITION : positive) is
TEMP : integer .= ROW_POSITION - 1;

begin
if TEMP = 0 then

put_line (OUT_FILE_TYPE, “In or as part),
put_line (QUT_FILE_TYPE, “of the primary *);

190

put (OUT_FILE_TYPE, “product 5

elsif TEMP = 1 then
put_line (OUT_FILE_TYPE, “Extemnal to or);
put_line (OUT_FILE_TYPE, “in support of *);
put_line (OUT_FILE_TYPE, “the primary *);
put (OUT_FILE_TYPE, “product “%

end if;

end HEADING_USAGE;

procedure HEADING_DEV_STATUS (ROW_POSITION : positive) is
TEMP : integer := ROW_POSITION - I;
begin

if TEMP = 0 then
put_line (OUT_FILE_TYPE, “Estimated or *);
put (OUT_FILE_TYPE, “planned “Y;
elsif TEMP = 1 then
put (OUT_FILE_TYPE, “Designed *);
elsif TEMP = 2 then
put (OUT_FILE_TYPE, “Coded “%
elsif TEMP = 3 then
put_line (OUT_FILE_TYPE, “Unit tests com-");
put (OUT_FILE_TYPE, “pleted “Y;
elsif TEMP = 4 then
put_line (OUT_FILE_TYPE, “Integrated into”);
put (OUT_FILE_TYPE, “components *);
elsif TEMP = § then
put_line (OUT_FILE_TYPE, “Test readiness *);
put_line (OUT_FILE_TYPE, “review com- *);
put (OUT_FILE_TYPE, “pleted “Y;
elsif TEMP = 6 then
put_line (OUT_FILE_TYPE, “Software (CSCD");
put (OUT_FILE_TYPE, “tests completed™);
elsif TEMP = 7 then
put_line (OUT_FILE_TYPE, “System tests *);
put (OUT_FILE_TYPE, “completed *);
end if;

end HEADING_DEV_STATUS;

function FIND_PRIORITY_F (IN_STMT_TYPE : in STMT_TYPE) return integer is

COUNTER : integer:=1;
PRIORITY_NUM : integer :=0;

191

begin

for F in PRIORITY_ARRAY_F’range loop
if PRIORITY_ARRAY_F (F) = IN_STMT_TYPE then
exit;
else
COUNTER = COUNIER + 1;
end if;
end loop;

PRIORITY_NUM := COUNTER;
return PRIORITY_NUM;

end FIND_PRIORITY_F;

-.

function COUNT_TOTAL_LINES_A (IN_COUNT_TOTALS : COUNT_TOTALS_TYPE) return
natural is

TEMP : natural;

begin

TEMP = IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS PRAGMA_TOTAL;

return TEMP;

end COUNT_TOTAL_LINES_A;

function COUNT_TOTAL_LINES_B (IN_COUNT_TOTALS : in COUNT_TOTALS_TYPE)
return natural is

TEMP : natural;
begin
TEMP := IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.PRAGMA_TOTAL;
return TEMP;

end COUNT_TOTAL_LINES_B;

192

function COUNT_TOTAL_LINES_C (IN_COUNT_TOTALS : in COUNT_TOTALS_TYPE)
return natural is

TEMP : natural;

begin

TEMP := IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS .PRAGMA_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.CMTS_ON_OWN_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.CMTS_W_SRC_TOTAL;

return TEMP;

end COUNT_TOTAL_LINES_C;

function COUNT_TOTAL_LINES_D (IN_COUNT_TOTALS : in COUNT_TOTAI.S_TYPE)
return natural is

TEMP : natural;
begin
TEMP ;= IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.PRAGMA_TOTAL;
return TEMP;

end COUNT_TOTAL_LINES_D;

function COUNT_TOTAL_LINES_E (IN_COUNT_TOTALS : in COUNT_TOTALS_TYPE)
return natural is

TEMP : natural;

begin

TEMP := IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL +

193

IN_COUNT_TOTALS.STMT_NUMS.PRAGMA_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.CMTS_ON_OWN_TOTAL +
IN_COUNT_TOTALS.STMT_NUMS.CMTS_W_SRC_TOTAL;

return TEMP;

end COUNT_TOTAL_LINES_E;

function COUNT_TOTAL _LINES_F (IN_COUNT_TOTALS : in COUNT_TOTALS_TYPE)
return natural is

TEMP : natural ;= 0;
begin

if RECORD_FLAGS_F.PANEL3LINE _1 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS .EXEC_TOTAL,;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_3 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS.DEC_TOTAL;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_4 then

TEMP = TEMP + IN_COUNT_TOTALS.STMT_NUMS.PRAGMA_TOTAL;
end if;
if RECORD_FI.AGS_F.PANEL3.LINE_6 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS.CMTS_ON_OWN_TOTAL;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_7 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS.CMTS_W_SRC_TOTAL;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_S then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS.BANNER_ CMTS _TOTAL,;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_9 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS EMPTY_CMTS_TOTAL;
end if;
if RECORD_FLAGS_F.PANEL3.LINE_10 then

TEMP := TEMP + IN_COUNT_TOTALS.STMT_NUMS.BLANK_LINES_TOTAL;
end if;

return TEMP;

end COUNT_TOTAL_LINES_F;

194

_

procedure PRINT_REPORT_HEADER 1 is
MY_TEMP : string (1 .. 11) := (others => * °);
begin

new_line (OUT_FILE_TYPE),

put (OUT_FILE_TYPE,“ Report Name: *);

put_line (OUT_FILE_TYPE, RECORD_FLAGS.PANEL2 REPORT_HEADING (1)1 .. 50));
put (OUT_FILE_TYPE,“ File List used: “);

put_line (OUT_FILE_TYPE, RECORD_FLAGS PANEL2.IN_FILE_NAME (1)(1 .. 50));
put (OUT_FILE_TYPE,“ Requested by: “);

put_line (OUT_FILE_TYPE, RECORD_FLAGS.PANEL2 REQUESTOR (1)(1 .. 50));
new_line (OUT_FILE_TYPE);

put_line (OUT_FILE_TYPE,“ Measuredas: Physical source lines “);

new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,“ Delivered as: “);

MY_TEMP := GLOBAL . RECORD_FLAGS.PANEL6.DEL_OPTION (1)1 .. 11};

if MY_TEMP = “Delivered a” then

put_line (OUT_FILE_TYPE, “Delivered as source”);
elsif MY_TEMP = “Delivered i” then

put_line (QUT_FILE_TYPE, “Delivered in compiled or executable form, but not as source™);
elsif MY_TEMP = “Under confi” then

put_line (OUT_FILE_TYPE, “Under configuration control”);
elsif MY_TEMP = “Not under c” then

put_line (OUT_FILE_TYPE, “Not under configuration control”);
else

put_line (OUT_FILE_TYPE, “Don’t care”);
end if;

new_line (OUT_FILE_TYPE);

end PRINT_REPORT_HEADER_1;

procedure PRINT_REPORT_HEADER_2 is
begin

new_line (OUT_FILE_TYPE);
put (OUT_FILE_TYPE, “ “¥%
put (OUT_FILE_TYPE, “ Total Total Individual”);
new_line (OUT_FILE_TYPE);
put (OUT_FILE_TYPE, “ “Y
put (OUT_FILE_TYPE, “Includes Excludes totals **);
new_line (OUT_FILE_TYPE);

195

end PRINT_REPORT_HEADER_2;

procedure PRINT_STMT_HEADER is
begin

new_line (OUT_FILE_TYPE);

put_line (OUT_FILE_TYPE, “Statement type”);

put_line (OUT_FILE_TYPE, “ When a line or statement contains mcre than”);
put_line (OUT_FILE_TYPE, “ one type, classify it as the type with the “);
put_line (OUT_FILE_TYPE, “ highest precedence.™);

new_line (OUT_FILE_TYPE);

end PRINT_STMT_HEADER;

procedure PRINT_STMT_TYPE_1_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :ininteger) is
begin

put (OUT_FILE_TYPE, “ 1 Executables Precedence =>);
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “17);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPEval (0)), width => 1);
end if;
put (OUT_FILE_TYPE,* XXXX “Y%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.EXEC_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_1_IN;

procedure PRINT_STMT_TYPE_1_EX (REPORT_TYPE : ininteger) is
begin

put (OUT_FILE_TYPE, “ 1 Executables Precedence => “);
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “1”);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (0)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX 0™);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_1_EX;

196

procedure PRINT_STMT_TYPE_2is
begin

put_line (OUT_FILE_TYPE, * 2 Nonexecutables *);

end PRINT_STMT_TYPE_2;

procedure PRINT_STMT_TYPE_3_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :in integer) is
begin

put (OUT_FILE_TYPE,“3 Declarations),
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “2”);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (1)), width => 1);
end if;
put (OUT_FILE_TYPE,“ XXXX “Y;
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.DEC_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_3_IN;

procedure PRINT_STMT_TYPE_3_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE, “3 Declarations “Y
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “2™);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE val (1)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX o™
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_3_EX;

procedure PRINT_STMT_TYPE_4_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :in integer) is
begin

197

put (OUT_FILE_TYPE,*4 Compiler Directives “%
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “3");
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE val (2)), width => 1);
end if;
put (OUT_FILE_TYPE,” XXXX “»%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.PRAGMA_TOTAL, width => 10);
new_line (QUT_FILE_TYPE);

end PRINT_STMT _TYPE_4_IN;

procedure PRINT_STMT_TYPE_4_EX (REPORT_TYPE : ininteger) is
begin

put (OUT_FILE_TYPE,“4 Compiler Directives “Y;
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “3™);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (2)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX o);
new_line (OUT_FILE_TYPE);
end PRINT_STMT_TYPE_4_EX;

procedure PRINT_STMT_TYPE_S is
begin

put_line (OUT_FILE_TYPE, “5 Comments *);

end PRINT_STMT_TYPE_S;

p.ocedure PRINT_STMT_TYPE_6_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :in integer) is
begin

put (OUT_FILE_TYPE,“6 On their own lines “%
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “4”);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (3)), width => 1);
end if;
put (OUT_FILE_TYPE,* XXXX “¥

198

put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.CMT. S_ON_OWN_TOTAL, width
=> 10);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_6_IN;

procedure PRINT_STMT_TYPE_6_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE,“ 6 On their own lines “Y
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “4”);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (3)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX 0™
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_6_EX;

procedure PRINT_STMT_TYPE_7_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :ininteger) is
begin

put (OUT_FILE_TYPE,“7 On lines with source code “%
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “5™);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (4)), width => 1);
end if;

put (OUT_FILE_TYPE,“ XXXX “%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.CMTS_W_SRC_TOTAL, width
=> 10);

new_line (OUT_FILE_TYPE),

end PRINT_STMT_TYPE_7_IN;

procedure PRINT_STMT_TYPE_7_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE,“7 On lines with source code “¥%

if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “5”);

199

else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (4)). width => 1);
end if;
put (OUT_FILE_TYPE, XXXX o),
new_line (OUT_FILE_TYPE),

end PRINT_STMT_TYPE_7_EX;

procedure PRINT_STMT_TYPE_8_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :ininteger) is
begin

put (OUT_FILE_TYPE,“8 Banners and nonblank spacers *);
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “67);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (5)), width => 1);
end if;
put (OUT_FILE_TYPE,“ XXXX 9
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.BANNER_CMTS_TOTAL, width
=>10);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_8_IN;

procedure PRINT_STMT_TYPE_8_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE,“8 Banners and nonblank spacers *);
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “6");
else
put (OUT_FILE_TYPE, FIND PRIORITY_F (STMT_TYPE val (5)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX o),
new_line (OQUT_FILE_TYPE);

end PRINT_STMT_TYPE_8_EX;

procedure PRINT_STMT_TYPE_9_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;

200

REPORT_TYPE :ininteger) is
begin

put (OUT_FILE_TYPE,“9 Blank (empty) comments “);
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “7");
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPEval (6)), width => 1);
end if;
put (OUT_FILE_TYPE," XXXX “);
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.EMPTY_CMTS_TOTAL, width
=> 10);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_9_IN;

procedure PRINT_STMT_TYPE_9_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE,“9 Blank (empty) comments “¥;
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “7);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (6)), width => 1);
end if;
put (OUT_FILE_TYPE, “ XXXX o™
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_9_EX;

procedure PRINT_STMT_TYPE_10_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE;
REPORT_TYPE :ininteger) is
begin

put (OUT_FILE_TYPE, “10 Blank lines “)%
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “8”);
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (7)), width => 1);
end if;
put (OUT_FILE_TYPE,“ XXXX “¥%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.STMT_NUMS.BLANK_LINES_TOTAL, width
=> 10);
new_line (QUT_FILE_TYPE);

201

end PRINT_STMT_TYPE_10_IN;

procedure PRINT_STMT_TYPE_10_EX (REPORT_TYPE : in integer) is
begin

put (OUT_FILE_TYPE, “10 Blank lines “Y
if REPORT_TYPE > 0 then
put (OUT_FILE_TYPE, “8");
else
put (OUT_FILE_TYPE, FIND_PRIORITY_F (STMT_TYPE'val (7)), width => 1);
end if;
put (OUT_FILE_TYPE, * XXXX o™);
new_line (OUT_FILE_TYPE);

end PRINT_STMT_TYPE_10_EX;

procedure PRINT_HOW_PRODUCED is
begin

new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, “How Produced™);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED;

procedure PRINT_HOW_PRODUCED_1_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE,“ 1 Programmed XXXX “)
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED_NUMS.PROGRAMMED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_HOW_PRODUCED_1_IN;

procedure PRINT_HOW_PRODUCED_1_EX is

begin
put (OUT_FILE_TYPE, “ 1 Programmed XXXX 0™);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_1_EX;

202

~e

procedure PRINT_HOW_PRODUCED_2_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 2 Generated with source code generators XXXX “);
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED_NUMS.GENERATED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_HOW_PRODUCED_2_IN;

procedure PRINT_HOW_PRODUCED_2_EX is

begin
put (OUT_FILE_TYPE, “ 2 Generated with source code generators XXXX (R
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_2_EX;

procedure PRINT_HOW_PRODUCED_3_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 3 Converted with automated translators XXXX “Y
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED_NUMS.CONVERTED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_3_IN;

procedure PRINT_HOW_PRODUCED_3_EX is

begin
put (OUT_FILE _TYPE, “3 Converted with automated translators XXXX 0™);
new_line (OUT_FILE_TYPE),

end PRINT_HOW_PRODUCED_3_EX;

procedure PRINT_HOW_PRODUCED_4_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 4 Copied or reused without change XXXX “Y
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED_NUMS.COPIED_TOTAL, width
=> 10);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_4_IN;

203

procedure PRINT_HOW_PRODUCED_4_EX is
begin

put (OUT_FILE_TYPE, “ 4 Copied or reused without change XXXX 07y

new_line (OUT_FILE_TYPE);
end PRINT_HOW_PRODUCED_4_EX;

-~

procedure PRINT_HOW_PRODUCED_S_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 5 Modified XXXX “Y
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED | NUMS.MODIFIED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_S_IN;

procedure PRINT_HOW_PRODUCED_S_EX is

begin
put (OUT_FILE_TYPE, “ 5 Modified XXXX 0”);
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_S_EX;

procedure PRINT_HOW_PRODUCED_6_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is

begin
put (OUT_FILE_TYPE, “ 6 Removed XXXX “)%
put (QUT_FILE_TYPE, IN_COUNT_TOTAL.PRODUCED_NUMS.REMOVED_TOTAL,
width => 10);

new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_6_IN;

procedure PRINT_HOW_PRODUCED_6_EX is

begin
put (OUT_FILE_TYPE, “ 6 Removed XXXX 0™,
new_line (OUT_FILE_TYPE);

end PRINT_HOW_PRODUCED_6_EX;

procedure PRINT_ORGIN is

begin
new_line (OUT_FILE_TYPE),
put_line (OUT_FILE_TYPE, “Orgin”);
new_line (OUT_FILE_TYPE);

end PRINT_ORGIN;

procedure PRINT_ORGIN_1_IN (IN_COUNT _TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (QUT_FILE_TYPE, “ 1 New Work: no prior existence XXXX “Y;
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS NEW_WORK_TOTAL, width
=> 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_I1_IN;

-

procedure PRINT_ORGIN_1_EX is

begin
put (OUT_FILE_TYPE, “ 1 New Work: no prior existence XXXX");
put_line (QUT_FILE_TYPE, “ 0"

end PRINT_ORGIN_1_EX;

procedure PRINT_ORGIN_2 is
begin

put_line (OUT_FILE_TYPE, “2 Prior work: taken or adapted from “);
end PRINT_ORGIN_2;

procedure PRINT_ORGIN_3_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE,“3 A previous versiv:!, build, or release XXXX “Y
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.ORGIN_NUMS.PREVIOUS_VERSION_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_3_IN;

procedure PRINT_ORGIN_3_EX is

begin
put (OUT_FILE_TYPE,“3 A previous version, build, or release XXXX"),
put_line (OUT_FILE_TYPE, “ 0”);

205

end PRINT_ORGIN_3_EX;

procedure PRINT_ORGIN_4_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put_line (OUT_FILE_TYPE, “4 Commercial, off the shelf software”);
put (OUT_FILE_TYPE,“ COTS), other than libraries XXXX)
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS.COTS_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_4_IN;

procedure PRINT_ORGIN_4_EX is

begin
put_line (OUT_FILE_TYPE, “4 Commercial, off the shelf software”);
put (OUT_FILE_TYPE,*“ COTS), other than libraries XXXX™)
put_line (OUT_FILE_TYPE, “ 07);

end PRINT_ORGIN_4_EX;

procedure PRINT_ORGIN_S_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is

begin
put_line (OUT_FILE_TYPE, “5 Government fumished software (GFS),”);
put (OUT_FILE_TYPE,“ other than reuse libraries XXXX “%

put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS.GFS_TOTAL, width => 10);
new_line (OUT_FILE_TYPE),
end PRINT_ORGIN_S_IN;

-

procedure PRINT_ORGIN_5_EX is

begin
put (OUT_FILE_TYPE,*5 Government furnished software (GFS),”);
put (OUT_FILE_TYPE,* other than reuse libraries XXXX”),
put_line (OUT_FILE_TYPFE, “ “%

end PRINT_ORGIN_5_EX;

procedure PRINT_ORGIN_6_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE,*“ 6 Another product XXXX “);
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.ORGIN_NUMS.ANNOTHER_PRODUCT_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_6_IN;

206

procedure PRINT_ORGIN_6_EX is

begin
put (OUT_FILE_TYPE,“ 6 Another product XXXX™);
put_line (OUT_FILE_TYPE, “ 0y,

end PRINT_ORGIN_6_EX;

procedure PRINT_ORGIN_7_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put_line (OUT_FILE_ TYPE “7 A vendor-supplied language support”™);
put (OUT_FILE_TYPE, library (unmodified) XXXX “¥%
put (OUT_FILE_TYPE, IN _COUNT_TOTAL.ORGIN_NUMS.VS_SPT_LIB_TOTAL, width =>
10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_7_IN;

procedure PRINT_ORGIN_7_EX is

begin
put_line (OUT_FILE_TYPE, “7 A vendor-supplied language support”™);
put (OUT_FILE_TYPE,* library (unmodified) XXXX™);

put_line (OUT_FILE_TYPE, “ 0™);
end PRINT_ORGIN_7_EX;

procedure PRINT_ORGIN_8_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put_line (OUT_FILE_TYPE, “8 A vedor-supplied operating system or”);
put (OUT_FILE_TYPE,“ utility (unmodified) XXXX “),
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS.VS_SPT_OS_TOTAL, width =>
10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_8_IN;

procedure PRINT_ORGIN_8_EX is

begin
put_line (OUT_FILE_TYPE, “8 A vedor-supplied operating system or”);
put (OUT_FILE_TYPE,* utility (unmodified) XXXX™y,
put_line (OUT_FILE_TYPE, “ 0™

end PRINT_ORGIN_8_EX;

procedure PRINT_ORGIN_9_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin

207

put_line (OUT_FILE_TYPE, “9 A local or modified language support™);
put (OUT_FILE_TYPE,“ library or operating system XXXX “%
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.ORGIN_NUMS.LOCAL_SUPPLIED_LIB_TOTAL, width => 10);
new_line (OUT_FILE_TYPE),
end PRINT_ORGIN_9_IN;

procedure PRINT_ORGIN_9_EX is

begin
put_line (OUT_FILE_TYPE,“9 A local or modified language support”™);
put (OUT_FILE_TYPE,*“ library or operating system XXXX");
put_line (OUT_FILE_TYPE, “ 0");

end PRINT_ORGIN_9_EX;

procedure PRINT_ORGIN_10_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “10 Other commercial library XXXX “%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS.COMMERCIAL_LIB_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_10_IN;

procedure PRINT_ORGIN_10_EX is

begin
put (OUT_FILE_TYPE, “10 Other commercial library XXXX"),
put_line (OUT_FILE_TYPE, “ "),

end PRINT_ORGIN_10_EX;

procedure PRINT_ORGIN_11_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin

put_line (OUT_FILE_TYPE, “11 A reuse library (software designed™);

put (OUT_FILE_TYPE,*“ for reuse) XXXX “Y,

put (OUT_FILE_TYPE, IN_COUNT_TOTAL.ORGIN_NUMS REUSE_LIB_TOTAL, width =>

10);

new_line (OUT_FILE_TYPE);

end PRINT_ORGIN_11_IN;

procedure PRINT_ORGIN_11_EX is

begin
put_line (OUT_FILE_TYPE, “11 A reuse library (software designed”);
put (OUT_FILE_TYPE,“ for reuse) XXXX™),

208

put_line (OUT_FILE_TYPE, “ o),
end PRINT_ORGIN_11_EX;

procedure PRINT_ORGIN_12_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “12 Other software component or library XXXX “);
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.ORGIN_NUMS.OTHER_COMPONENT_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_ORGIN_12 _IN;

procedure PRINT_ORGIN_12_EX is

begin
put (OUT_FILE_TYPE, “12 Other software component or library XXXX™;
put_line (OUT_FILE_TYPE, “ 0);

end PRINT_ORGIN_12_EX;

procedure PRINT_USAGE is

begin
new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, “Usage™);
new_line (OUT_FILE_TYPE);

end PRINT_USAGE;

procedure PRINT_USAGE_1_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 1 In or as part of the primary product XXXX %
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.USAGE_NUMS.PRIMARY_PRODUCT_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_USAGE_1_IN;

procedure PRINT_USAGE_1_EX is

begin
put (OUT_FILE_TYPE, “ 1 In or as part of the primary product XXXX 0™y
new_line (OUT_FILE_TYPE);

end PRINT_USAGE_1_EX;

209

procedure PRINT_USAGE_2_IN (IN_COUNT_TOTAL : in COUNT_TOTALS_TYPE) is
begin
put_line (OUT_FILE_TYPE, “ 2 External to or in support of the”);

put (OUT_FILE_TYPE,* primary product XXXX “%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.USAGE_NUMS EXTERNAL_TOTAL, width=>
10);

new_line (OUT_FILE_TYPE);
end PRINT_USAGE_2_IN;

procedure PRINT_USAGE_2_EX is

begin
put_line (OUT_FILE_TYPE, “ 2 Extemal to or in support of the”™);
put (OUT_FILE_TYPE,* primary product XXXxX o™);

new_line (OUT_FILE_TYPE);
end PRINT_USAGE_2_EX;

-

procedure PRINT_DEVELOPMENT_STATUS is
begin
new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, “Development Status™);
new_line (OUT_FILE_TYPE);
end PRINT_DEVELOPMENT _STATUS;

procedure PRINT_DEVELOPMENT_STATUS_1_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 1 Estimated or planned XXXX “¥
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.DEVELOPED_NUMS ESTIMATED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);
end PRINT DEVELOPMENT_STATUS_1_IN;

procedure PRINT_DEVELOPMENT_STATUS_I_EX is

begin
put (OUT_FILE_TYPE, “ 1 Estimated or planned XXXX™);
put_line (OUT_FILE_TYPE, « o)

end PRINT_DEVELOPMENT_STATUS_1_EX;

procedure PRINT_DEVELOPMENT_STATUS_2_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin

210

put (OUT_FILE_TYPE, “ 2 Designed XXXX “%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.DEVELOPED_NUMS.DESIGNED_TOTAL,
width => 10);

new_line (OUT_FILE_TYPE);
end PRINT_DEVELOPMENT_STATUS_2_IN;

procedure PRINT_DEVELOPMENT_STATUS_2_EX is

begin
put (OUT_FILE_TYPE, “ 2 Designed XXXX");
put_line (OUT_FILE_TYPE, “ 0);

end PRINT_DEVELOPMENT_STATUS_2_EX;

procedure PRINT_DEVELOPMENT_STATUS_3_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 3 Coded XXXX “Y%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.DEVELOPED_NUMS.CODED_TOTAL, width
=>10);
new_line (OUT_FILE_TYPE),
end PRINT_DEVELOPMENT_STATUS_3_IN;

procedure PRINT_DEVELOPMENT_STATUS_3_EX is

begin
put (OUT_FILE_TYPE, “ 3 Coded XXXX"),
put_line (OUT_FILE_TYPE, “ 0™);

end PRINT_DEVELOPMENT_STATUS_3_EX;

procedure PRINT_DEVELOPMENT_STATUS_4_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 4 Unit tests completed XXXX “Y
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.DEVELOPED_NUMS.UNIT_TEST_DONE_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_DEVELOPMENT_STATUS_4_IN;

procedure PRINT_DEVELOPMENT_STATUS_4_EX is

begin
put (OUT_FILE_TYPE, “ 4 Unit tests completed XXXX™);
put_line (QUT_FILE_TYPE, ¢ 07);

end PRINT_DEVELOPMENT_STATUS_4_EX;

211

procedure PRINT_DEVELOPMENT_STATUS_S_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ § Integrated into components XXXX “%
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.DEVELOPED_NUMS.INTEGRATED_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_DEVELOPMENT_STATUS_5_IN;

procedure PRINT_DEVELOPMENT_STATUS_S_EX is

begin
put (OUT_FILE_TYPE, “ 5 Integrated into components XXXX"),
put_line (OUT_FILE_TYPE, 0”);

end PRINT_DEVELOPMENT_STATUS_5_EX;

procedure PRINT_DEVELOPMENT_STATUS_6_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 6 Test readiness review completed XXXX)
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.DEVELOPED_NUMS.TEST_READINESS_REVIEW_TOTAL, width =>
10);
new_line (OUT_FILE_TYPE),
end PRINT_DEVELOPMENT_STATUS_6_IN;

procedure PRINT_DEVELOPMENT_STATUS_6_EX is

begin
put (OUT_FILE_TYPE, “ 6 Test readiness review completed XXXX"),
put_line (OUT_FILE_TYPE, “ 0™);

end PRINT_DEVELOPMENT_STATUS_6_EX;

procedure PRINT_DEVELOPMENT_STATUS_7_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE_TYPE, “ 7 Software (CSCI) tests completed XXXX “%
put (OUT_FILE_TYPE,
IN_COUNT_TOTAL.DEVELOPED_NUMS.CSCI_COMPLETED_TOTAL, width => 10);
new_line (OUT_FILE_TYPE);
end PRINT_DEVELOPMENT_STATUS_7_IN;

212

procedure PRINT_DEVELOPMENT_STATUS_7_EX is

begin
put (QUT_FILE_TYPE, “ 7 Software (CSCI) tests completed XXXX"™);
put_line (OUT_FILE_TYPE, o)

end PRINT_DEVELOPMENT_STATUS_7_EX;

procedure PRINT_DEVELOPMENT_STATUS_8_IN (IN_COUNT_TOTAL : in
COUNT_TOTALS_TYPE) is
begin
put (OUT_FILE _TYPE, “ 8 System tests completed XXXX “)
put (OUT_FILE_TYPE, IN_COUNT_TOTAL.DEVELOPED_NUMS.SYSTEM_TEST_TOTAL,
width => 10);
new_line (OUT_FILE_TYPE),
end PRINT_DEVELOPMENT_STATUS_8_IN;

procedure PRINT_DEVELOPMENT_STATUS_8_EX is

begin
put (OUT_FILE_TYPE, “ 8 System tests completed XXXX™);
put_line (OUT_FILE_TYPE, “ 0™);

end PRINT_DEVELOPMENT_STATUS_8_EX;

procedure PRINT_DATA_ARRAY _F is
begin

-~ check for 3D arrays
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELA.DEF DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_1_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANELG6.DEF_DATA_ARRAY then
RETRIEVE_2_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF DATA_ARRAY then
RETRIEVE_8_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL6.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then

213

RETRIEVE_S_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANELS.DEF_DATA_ARRAY then
RETRIEVE_6_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL6.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY then
RETRIEVE_9_2D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL6.DEF DATA_ARRAY and
RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_1_3D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_3_3D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL6.DEF _DATA_ARRAY and
RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANEL9.DEF_DATA_ARRAY then
RETRIEVE_2_3D.INTERFACE_3D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANELS9.DEF_DATA_ARRAY and
RECORD_FILLAGS_F.PANEL6.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_4_3D.INTERFACE_3D_MAT (REPORT_F);
end if;

-~ check for 2D amays
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANELADEF_DATA_ARRAY then
RETRIEVE_1_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_FPANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS5.DEF_DATA_ARRAY then
RETRIEVE_4_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_FPANELG6.DEF_DATA_ARRAY then
RETRIEVE_2_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL3.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY then
RETRIEVE_8_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and

214

RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_3_2D.INTERFACE_2D_MAT (REPORT_F);
endif;
if RECORD_FLAGS_FPANEL4.DEF DATA_ARRAY and
RECORD_FLAGS_FPANELG6.DEF_DATA_ARRAY then
RETRIEVE_7_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL4.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY then
RETRIEVE_10_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANEL6.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANELS.DEF_DATA_ARRAY then
RETRIEVE_S5_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_F.PANELS5.DEF_DATA_ARRAY and
RECORD_FLAGS_F.PANEL9.DEF_DATA_ARRAY then
RETRIEVE_6_2D.INTERFACE_2D_MAT (REPORT_F);
end if;
if RECORD_FLAGS_FPANEL9.DEF_DATA_ARRAY and
RECORD_FLLAGS_F.PANEL6.DEF_DATA_ARRAY then
RETRIEVE_9_2D.INTERFACE_2D_MAT (REPORT_F);
end if;

end PRINT_DATA_ARRAY _F;

function COUNT_STMT_TYPE (S :in STMT_TYPE;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for Hin HOW_PRODUCED'FIRST .. HOW_PRODUCED’LAST loop
for O in ORGIN'FIRST .. ORGIN'LAST loop
for U in USAGE’'FIRST .. USAGE’LAST loop
for D in DEVELOPMENT_STATUS FIRST .. DEVELOPMENT_STATUS’LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S,H,0, U, D);
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_STMT_TYPE;

215

-

function COUNT_HOW_PRODUCED (H : in HOW_PRODUCED;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) retum integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE'LAST loop
for O in ORGIN’FIRST .. ORGIN’LAST loop
for U in USAGE'FIRST .. USAGE'LAST loop
for D in DEVELOPMENT_STATUS 'FIRST .. DEVELOPMENT_STATUS’LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S,H,0,U,D);
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_HOW_PRODUCED;

function COUNT_ORGIN (C : in ORGIN;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE’LAST loop
for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for U in USAGE'FIRST .. USAGE'LAST loop
for D in DEVELOPMENT_STATUS 'FIRST .. DEVELOPMENT_STATUS’LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S,H, 0, U, D);
end loop;
end loop;
end loop;
end loop;

retun TEMP_COUNT;

end COUNT_ORGIN;

function COUNT_USAGE (U : in USAGE;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0:

216

begin

for S in STMT_TYPE'FIRST .. STMT_TYPE'LAST loop
for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’LAST loop
for O in ORGIN'FIRST .. ORGIN'LAST loop
for D in DEVELOPMENT_STATUS 'FIRST .. DEVELOPMENT_STATUS LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (§,H,0, U, D);
end loop;
end loop;
end loop;
end loop;

return TEMP_COUNT;

end COUNT_USAGE;

function COUNT_DEVELOPMENT_STATUS (D : in DEVELOPMENT_STATUS;
IN_COUNT_ARRAY : in COUNT_ARRAY_TYPE) return integer is

TEMP_COUNT : integer :=0;
begin

for S in STMT_TYPE'FIRST .. STMT_TYPE’'LAST loop
for Hin HOW_PRODUCED’FIRST .. HOW_PRODUCED’'LAST loop
for O in ORGIN’FIRST .. ORGIN’LAST loop
for U in USAGE'FIRST .. USAGE’LAST loop
TEMP_COUNT := TEMP_COUNT + IN_COUNT_ARRAY (S,H, 0, U, D);
end loop;
end loop;

end loop;
end loop;

retum TEMP_COUNT;

end COUNT_DEVELOPMENT_STATUS;

procedure COUNT_ATTRIBUTE_ONE (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE) is

begin

if IN_RECORD_FLAGS.PANEL3 line_1 then
IN_COUNT_TOTALS.STMT_NUMS.EXEC_TOTAL := COUNT_STMT_TYPE
(STMT_TYPE'val (0), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_3 then

217

IN_COUNT_TOTALS.STMT_NUMS DEC_TOTAL := COUNT_STMT_TYPE
(STMT_TYPE'val (1), IN_ARRAY);
end if;
if IN_RECORD_FIL.AGS.PANEL3 line_4 then
IN_COUNT_TOTALS.STMT_NUMS.PRAGMA_TOTAL := COUNT_STMT_TYPE
(STMT_TYPE'val (2), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3 line_6 then
IN_COUNT_TOTALS.STMT_NUMS.CMTS_ON_OWN_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (3), IN_ARRAY);
end if;
if IN_RECORD_FL.AGS.PANEL3.line_7 then
IN_COUNT_TOTALS.STMT_NUMS.CMTS_W_SRC_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE’val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_8 then
IN_COUNT_TOTALS.STMT_NUMS.BANNER_CMTS_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (5), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL1.line_9 then
IN_COUNT_TOTALS.STMT_NUMS. EMPTY_CMTS_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (6), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL3.line_10 then
IN_COUNT_TOTALS.STMT_NUMS.BLANK_LINES_TOTAL :=
COUNT_STMT_TYPE (STMT_TYPE'val (7), IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_ONE;

procedure COUNT_ATTRIBUTE_TWO (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE) is

begin

if IN_RECORD_FLAGS.PANELA line_1 then
IN_COUNT_TOTALS.PRODUCED_NUMS.PROGRAMMED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (0), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA line_2 then
IN_COUNT_TOTALS.PRODUCED_NUMS.GENERATED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED’val (1), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA line_3 then
IN_COUNT_TOTALS.PRODUCED_NUMS.CONVERTED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (2), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA . line_4 then
IN_COUNT_TOTALS.PRODUCED_NUMS.COPIED_TOTAL :=

218

COUNT_HOW_PRODUCED (HOW_PRODUCED’val (3), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA line_S then
IN_COUNT_TOTALS.PRODUCED_NUMS.MODIFIED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELA4.line_6 then
IN_COUNT_TOTALS.PRODUCED_NUMS.REMOVED_TOTAL :=
COUNT_HOW_PRODUCED (HOW_PRODUCED'val (5), IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_TWO;

procedure COUNT_ATTRIBUTE_THREE (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE) is

begin

if IN_RECORD_FLAGS.PANELS.line_1 then
IN_COUNT_TOTALS.ORGIN_NUMSNEW_WORK_TOTAL := COUNT_ORGIN
(ORGIN’val (0), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_3 then
IN_COUNT_TOTALS.ORGIN_NUMS . PREVIOUS_VERSION_TOTAL :=
COUNT_ORGIN (ORGIN’val (1), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_4 then
IN_COUNT_TOTALS.ORGIN_NUMS.COTS_TOTAL := COUNT_ORGIN (ORGIN’val (2),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS.line_5 then
IN_COUNT_TOTALS.ORGIN_NUMS.GFS_TOTAL := COUNT_ORGIN (ORGIN’val (3),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS5 line_6 then
IN_COUNT_TOTALS.ORGIN_NUMS.ANNOTHER_PRODUCT_TOTAL :=
COUNT_ORGIN (ORGIN’val (4), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL5.line_7 then
IN_COUNT_TOTALS.ORGIN_NUMS.VS_SPT_LIB_TOTAL := COUNT_ORGIN
(ORGIN’val (5), IN_ARRAY);
end if:
if IN_RECORD_FLAGS.PANELS line_8 then
IN_COUNT_TOTALS.ORGIN_NUMS.VS_SPT_OS_TOTAL := COUNT_ORGIN
(ORGIN’val (6), IN_ARRAY);
end if;
if IN_ RECORD_FLAGS.PANELS5.line_9 then
IN_COUNT_TOTALS.ORGIN_NUMS.LOCAL_SUPPLIED_LIB_TOTAL :=
COUNT_ORGIN (ORGIN’val (7), IN_ARRAY);

219

end if;
if IN_RECORD_FLLAGS.PANELS line_10 then
IN_COUNT_TOTALS.ORGIN_NUMS.COMMERCIAL _LiB_TOTAL :=
COUNT_ORGIN (ORGIN’val (8), IN_ARRAY);
end if;
if IN_RECORD_FL.AGS.PANELS line_11 then
IN_COUNT_TOTALS.ORGIN_NUMS.REUSE_LIB_TOTAL := COUNT_ORGIN
(ORGIN'val (9), IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELS line_12 then
IN_COUNT_TOTALS.ORGIN_NUMS.OTHER_COMPONENT_TOTAL :=
COUNT_ORGIN (ORGIN’val (10), IN_ARRA.Y);
end if;

end COUNT_ATTRIBUTE_THREE;

-

procedure COUNT_ATTRIBUTE_FOUR (IN_RECORD_FLAGS :in FLAGS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE) is

begin

if IN_RECORD_FLAGS.PANELG.line_1 then

IN_COUNT_TOTALS.USAGE_NUMS.PRIMARY_PRODUCT_TOTAL :=
COUNT_USAGE (USAGE'val (0), IN_ARRAY);

end if;

if IN_RECORD_FLAGS.PANELG.line_2 then
IN_COUNT_TOTALS.USAGE_NUMS.EXTERNAL_TOTAL := COUNT_USAGE

(USAGE’val (1), IN_ARRAY),
end if;

end COUNT_ATTRIBUTE_FOUR;

-

procedure COUNT_ATTRIBUTE_FIVE (IN_RECORD_FLAGS :in FLACS;
IN_COUNT_TOTALS : in out COUNT_TOTALS_TYPE;
IN_ARRAY :in COUNT_ARRAY_TYPE)is

begin

if IN_RECORD_FLAGS.PANEL9.line_1 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.ESTIMATED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (0),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANEL9.line_2 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.DESIGNED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (1),
IN_ARRAY);

220

end if;
if IN_RECORD_FLAGS.PANELY.line_3 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.CODED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (2),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELO.line_4 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.UNIT_TEST_DONE_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (3),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_5 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.INTEGRATED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS 'val (4),
IN_ARRAY),
end if;
if IN_RECORD_FLAGS.PANELY.line_6 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.TEST_READINESS_REVIEW_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (5),
IN_ARRAY);
end if;
if IN_RECORD_FLAGS.PANELY.line_7 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.CSCI_COMPLETED_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (%),
IN_ARRAY);
end if;
if IN_RECORD_FL AGS.PANELY.line_8 then
IN_COUNT_TOTALS.DEVELOPED_NUMS.SYSTEM_TEST_TOTAL :=
COUNT_DEVELOPMENT_STATUS (DEVELOPMENT_STATUS val (7),
IN_ARRAY);
end if;

end COUNT_ATTRIBUTE_FIVE;

procedure REPORT_A (COUNT_TOTALS_A : in out COUNT_TOTALS_TYPE) is

REPORT_A_FLAG : integer:=1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0);

begin

new_line (OUT_FILE_TYPE, 2);
put_line (OUT_FILE_TYPE, * REPORT A™);

PRINT_REPORT_HEADER_1;

new_line (OUT_FILE_TYPE);
put (OUT_FILE_TYPE, “ Counted: *);

put (OUT_FILE_TYPE, COUNT_TOTAL_LINES_A (COUNT_TOTALS_A)),
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,* Estimated: “);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_A));

new_line (OUT_FILE_TYPE);
PRINT_REPORT_HEADER_2;

PRINT_STMT_HEADER;

PRINT_STMT_TYPE_1_IN (COUNT_TOTALS_A, REPORT_A_FLAG);
PRINT_STMT_TYPE_2;

PRINT_STMT_TYPE_3_IN (COUNT_TOTALS_A, REPORT_A_FLAG);
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_A, REPORT_A_FLAG);
PRINT_STMT_TYPE_S;

PRINT_STMT_TYPE_6_EX (REPORT_A_FLAG);
PRINT_STMT_TYPE_7_EX (REPORT_A_FLAG);
PRINT_STMT_TYPE_8_EX (REPORT_A_FLAG);
PRINT_STMT_TYPE_9_EX (REPORT_A_FLAG);
PRINT_STMT_TYPE_10_EX (REPORT_A_FLAG);

PRINT_HOW_PRODUCED;
PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_A);
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_A);
PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_A);
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_A);
PRINT_HOW_PRODUCED_5_IN (COUNT_TOTALS_A);
PRINT_HOW_PRODUCED_6_EX;

PRINT_ORGIN;

PRINT_ORGIN_1_IN (COUNT_TOTALS_A);
PRINT_ORGIN_2;

PRINT_ORGIN_3_IN (COUNT_TOTALS_A);
PRINT_ORGIN_4_IN (COUNT_TOTALS_A);
PRINT_ORGIN_5_IN (COUNT_TOTALS_A);
PRINT_ORGIN_6_IN (COUNT_TOTALS_A);
PRINT_ORGIN_7_EX;

PRINT_ORGIN_8_EX;

PRINT_ORGIN_9_IN (COUNT_TOTALS_A);
PRINT_ORGIN_10_IN (COUNT_TOTALS_A);
PRINT_ORGIN_11_IN (COUNT_TOTALS_A);
PRINT_ORGIN_12_IN (COUNT_TOTALS_A);

-- PRINT_REPORT_HEADER_2;
PRINT_USAGE;
PRINT_USAGE_1_IN (COUNT_TOTALS_A);
PRINT_USAGE_2_EX;
PRINT_DEVELOPMENT_STATUS;

PRINT_DEVELOPMENT_STATUS_1_EX;
PRINT_DEVELOPMENT_STATUS_2_EX;

222

PRINT_DEVELOPMENT_STATUS_3_EX;
PRINT_DEVELOPMENT_STATUS_4_EX;
PRINT_DEVELOPMENT_STATUS_5_EX;
PRINT_DEVELOPMENT_STATUS_6_EX;
PRINT_DEVELOPMENT_STATUS_7_EX;
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_A);

end REPORT_A;

procedure REPORT_B (COUNT_TOTALS_B : in COUNT_TOTALS_TYPE) is

REPORT_B_FLAG : integer :=1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0);

begin
new_page (OUT_FILE_TYPE),

new_line (OUT_FILE_TYPE, 2);

put_line (OUT_FILE_TYPE, “ REPORT B”);
new_line (OUT_FILE_TYPE);
PRINT_REPORT_HEADER_1;

new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE, * Counted: “);

put (OUT_FILE_TYPE, COUNT_TOTAL_LINES_B (COUNT_TOTALS_B));
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,“ Estimated: “);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_B));
new_line (OUT_FILE_TYPE);

PRINT_REPORT_HEADER_2;

PRINT_STMT_HEADER;

PRINT_STMT_TYPE_1_IN (COUNT_TOTALS_B, REPORT_B_FLAG);
PRINT_STMT_TYPE_2;

PRINT_STMT_TYPE_3_IN (COUNT_TOTALS_B, REPORT_B_FLAG);
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_B, REPORT_B_FLAG);
PRINT_STMT_TYPE_S;

PRINT_STMT_TYPE_6_EX (REPORT_B_FLAG);
PRINT_STMT_TYPE_7_EX (REPORT_B_FLAG);
PRINT_STMT_TYPE_8_EX (REPORT_B_FLAG),
PRINT_STMT_TYPE_9_EX (REPORT_B_FLAG);
PRINT_STMT_TYPE_10_EX (REPORT_B_FLAG);

PRINT_HOW_PRODUCED;

PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_B);
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_B);

223

PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_B);
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_B);
PRINT_HOW_PRODUCED_S_IN (COUNT_TOTALS_B);
PRINT_HOW_PRODUCED_6_IN (COUNT_TOTALS_B);

PRINT_ORGIN;

PRINT_ORGIN_1_IN (COUNT_TOTALS_B);
PRINT_ORGIN_2;

PRINT_ORGIN_3_IN (COUNT_TOTALS_B);
PRINT_ORGIN_4_IN (COUNT_TOTALS_B);
PRINT_ORGIN_S5_IN (COUNT_TOTALS_B);
PRINT_ORGIN_6_IN (COUNT_TOTALS_B);
PRINT_ORGIN_7_EX;

PRINT_ORGIN_8_EX;

PRINT_ORGIN_9_IN (COUNT_TOTALS_B);
PRINT_ORGIN_10_IN (COUNT_TOTALS_B);
PRINT_ORGIN_11_IN (COUNT_TOTALS_B);
PRINT_ORGIN_12_IN (COUNT_TOTALS_B);

PRINT_REPORT_HEADER_2;

PRINT_USAGE;
PRINT_USAGE_1_IN (COUNT_TOTALS_B);
PRINT_USAGE_2_EX;

PRINT_DEVELOPMENT_STATUS;
PRINT_DEVELOPMENT_STATUS_1_EX;
PRINT_DEVELOPMENT_STATUS_2_EX;
PRINT_DEVELOPMENT_STATUS_3_IN (COUNT_TOTALS_B);
PRINT_DEVELOPMENT_STATUS_4_IN (COUNT_TOTALS_B);
PRINT_DEVELOPMENT_STATUS_5_IN (COUNT_TOTALS_B);
PRINT_DEVELOPMENT_STATUS_6_IN (COUNT_TOTALS_B),
PRINT_DEVELOPMENT_STATUS_7_IN (COUNT_TOTALS_B);
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_B);

-- Using generic package to print out two dimensional array

-- of Development_status and How_produced

RETRIEVE_10_2D.INTERFACE_2D_MAT (REPORT_B);
end REPORT_B;

procedure REPORT_C (COUNT_TOTALS_C : in COUNT_TOTALS_TYPE) is

REPORT_C_FLAG : integer:=1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0);

begin

new_page (OUT_FILE_TYPE),

224

new_line (OUT_FILE_TYPE, 2),

put_line (OUT_FILE_TYPE, “ REPORT C”);
new_line (OUT_FILE_TYPE);
PRINT_REPORT_HEADER_1;

new_line (OUT_FILE_TYPE),

put (OUT_FILE_TYPE, “ Counted: *);

put (OUT_FILE_TYPE, COUNT_TOTAL_LINES_C (COUNT_TOTALS_C));
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE, “ Estimated: *);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_C));
new_line (OUT_FILE_TYPE);

PRINT_REPORT_HEADER _2;

PRINT_STMT_HEADER;

PRINT_STMT_TYPE_1_IN (COUNT_TOTALS_C, REPORT_C_FLAG);
PRINT_STMT_TYPE_2;

PRINT_STMT_TYPE_3_IN (COUNT_TOTALS_C, REPORT_C_FLAG);
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_C, REPORT_C_FLAG),
PRINT_STMT_TYPE_S;

PRINT_STMT_TYPE_6_IN (COUNT_TOTALS_C, REPORT_C_FLAG),
PRINT_STMT_TYPE_7_IN (COUNT_TOTALS_C, REPORT_C_FLAG);
PRINT_STMT_TYPE_8_EX (REPORT_C_FLAG),
PRINT_STMT_TYPE_9_EX (REPORT_C_FLAG);
PRINT_STMT_TYPE_10_EX (REPORT_C_FLAG);

PRINT_HOW_PRODUCED;

PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_C);
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_C);
PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_C);
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_C);
PRINT_HOW_PRODUCED_5_IN (COUNT_TOTALS_C);
PRINT_HOW_PRODUCED_6_IN (COUNT_TOTALS_C);

PRINT_ORGIN;

PRINT_ORGIN_1_IN (COUNT_TOTALS_C);
PRINT_ORGIN_2;

PRINT_ORGIN_3_IN (COUNT_TOTALS_C);
PRINT_ORGIN_4_IN (COUNT_TOTALS_C);
PRINT_ORGIN_5_IN (COUNT_TOTALS_C);
PRINT_ORGIN_6_IN (COUNT_TOTALS_ C);
PRINT_ORGIN_7_EX;

PRINT_ORGIN_8_EX;

PRINT_ORGIN_9_IN (COUNT_TOTALS_C);
PRINT_ORGIN_10_IN (COUNT_TOTALS_C);
PRINT_ORGIN_11_IN (COUNT_TOTALS_C);
PRINT_ORGIN_12_IN (COUNT_TOTALS_C);

PRINT_REPORT_HEADER _2;

225

PRINT_USAGE;
PRINT_USAGE_1_IN (COUNT_TOTALS_C);
PRINT_USAGE_2_EX;

PRINT_DEVELOPMENT_STATUS;
PRINT_DEVELOPMENT_STATUS_1_EX;
PRINT_DEVELOPMENT_STATUS_2_EX;
PRINT_DEVELOPMENT_STATUS_3_EX;
PRINT_DEVELOPMENT_STATUS_4_EX;
PRINT_DEVELOPMENT_STATUS_S_EX;
PRINT_DEVELOPMENT_STATUS_6_EX;
PRINT_DEVELOPMENT_STATUS_7_EX;
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_C),

- Using generic package to print out two dimensional array
-- of Statement_type and How_produced
RETRIEVE_1_2D.INTERFACE_2D_MAT (REPORT_C);

end REPORT_C;

procedure REPORT_D (COUNT_TOTALS_D : in COUNT_TOTALS_TYPE) is

REPORT_D_FLAG : integer:=1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0);

begin
new_page (OUT_FILE_TYPE);

new_line (OUT_FILE_TYPE, 2);

put_line (OUT_FILE_TYPE, “ REPORT D”);
new_line (OUT_FILE_TYPE);
PRINT_REPORT_HEADER_1;

new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE, “ Counted: “);

put (QUT_FILE_TYPE, COUNT_TOTAL_LINES_D (COUNT_TOTALS_D));
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE, “ Estimated: *);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_D));

new_line (OUT_FILE_TYPE);
PRINT_REPORT_HEADER_2;

PRINT_STMT_HEADER;

PRINT_STMT_TYPE_ l _IN (COUNT_TOTALS_D, REPORT_D_FLAG);
PRINT_STMT_TYPE_2

PRINT_STMT_TYPE 3 IN (COUNT_TOTALS_D, REPORT_D_FLAG);
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_D, REPORT_D_FLAG);

226

PRINT_STMT_TYPE_S;

PRINT_STMT_TYPE_6_EX (REPORT_D_FLAG);
PRINT_STMT_TYPE_7_EX (REPORT_D_FLAG);
PRINT_STMT_TYPE_8_EX (REPORT_D_FLAG),

PRINT_STMT_TYPE_9_EX (REPORT_D_FLAG);
PRINT_STMT_TYPE_10_EX (REPORT_D_FLAG);

PRINT_HOW_PRODUCED;

PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_D);
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_D);
PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_D);
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_D);
PRINT_HOW_PRODUCED_S_IN (COUNT_TOTALS_D);
PRINT_HOW_PRODUCED_6_IN (COUNT_TOTALS_D);

PRINT_ORGIN;

PRINT_ORGIN_]1_IN (COUNT_TOTALS_D).
PRINT_ORGIN_2;

PRINT_ORGIN_3_IN (COUNT_TOTALS_D);
PRINT_ORGIN_4_IN (COUNT_TOTALS_D),
PRINT_ORGIN_5_IN (COUNT_TOTALS_D);
PRINT_ORGIN_6_IN (COUNT_TOTALS_D);
PRINT_ORGIN_7_EX;

PRINT_ORGIN_8_EX;

PRINT_ORGIN_9_IN (COUNT_TOTALS_D);
PRINT_ORGIN_10_IN (COUNT_TOTALS_D);
PRINT_ORGIN_11_IN (COUNT_TOTALS_D);
PRINT_ORGIN_12_IN (COUNT_TOTALS_D);

-- PRINT_REPORT_HEADER_2;

PRINT_USAGE;
PRINT_USAGE_1_IN (COUNT_TOTALS_D);
PRINT_USAGE_2_EX;

PRINT_DEVELOPMENT_STATUS;
PRINT_DEVELOPMENT_STATUS_1_EX;
PRINT_DEVELOPMENT_STATUS_2_EX;
PRINT_DEVELOPMENT_STATUS_3_EX;
PRINT_DEVELOPMENT_STATUS_4_EX;
PRINT_DEVELOPMENT_STATUS_S_EX;
PRINT_DEVELOPMENT_STATUS_6_EX;
PRINT_DEVELOPMENT_STATUS_7_EX;
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_D);

-- Using generic package to print out two dimensional array
-- of Orgin and How_produced
RETRIEVE_3_2D.INTERFACE_2D_MAT (REPORT_D);

end REPORT_D;

227

procedure REPORT_E (COUNT_TOTALS_E : in COUNT_TOTALS_TYPE) is

REPORT E_FLAG : integer:=1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0),

begin
new_page (OUT_FILE_TYPE),

new_line (OUT_FILE_TYPE, 2);

put_line (OUT_FILE_TYPE, “ REPORTE");

new_line (OUT_FILE_TYPE);

PRINT_REPORT_HEADER_1!;

new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,* Counted: “);

put (OUT_FILE_TYPE, COUNT_TOTAL_LINES_E (COUNT_TOTALS_E));
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,“ Estimated: *);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_E));
new_line (OUT_FILE_TYPE);

PRINT_REPORT_HEADER_2;

PRINT_STMT_HEADER;

PRINT_STMT_TYPE_1_IN (COUNT_TOTALS_E, REPORT_E_FLAG);
PRINT_STMT_TYPE_2;

PRINT_STMT_TYPE_3_IN (COUNT_TOTALS_E, REPORT_E_FLAG);
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_E, REPORT_E_FLAG);
PRINT_STMT_TYPE_S;

PRINT_STMT_TYPE_6_IN (COUNT_TOTALS_E, REPORT_E_FLAG);
PRINT_STMT_TYPE_7_IN (COUNT_TOTALS_E, REPORT_E_FLAG);
PRINT_STMT_TYPE_8_EX (REPORT_E_FLAG);

PRINT_STMT_TYPE_9_EX (REPORT_E_FLAG);
PRINT_STMT_TYPE_10_EX (REPORT_E_FLAG);

PRINT_HOW_PRODUCED;

PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_E);
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_E);
PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_E);
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_E);
PRINT_HOW_PRODUCED_S_IN (COUNT_TOTALS_E);
PRINT_HOW_PRODUCED_6_IN (COUNT_TOTALS_E);

PRINT_ORGIN;

PRINT_ORGIN_1_IN (COUNT_TOTALS_E);
PRINT_ORGIN_2;

PRINT_ORGIN_3_IN (COUNT_TOTALS_E);
PRINT_ORGIN_4_IN (COUNT_TOTALS_E);
PRINT_ORGIN_5_IN (COUNT_TOTALS_E);
PRINT_ORGIN_6_IN (COUNT_TOTALS_E);
PRINT_ORGIN_7_EX;

228

PRINT_ORGIN_8_EX;

PRINT_ORGIN_9_IN (COUNT_TOTALS_E);
PRINT_ORGIN_10_IN (COUNT_TOTALS_E);
PRINT_ORGIN_11_IN (COUNT_TOTALS_E);
PRINT_ORGIN_12_IN (COUNT_TOTALS_E);

- PRINT_REPORT_HEADER _2;

PRINT_USAGE;
PRINT_USAGE_1_IN (COUNT_TOTALS_E);
PRINT_USAGE_2_EX;

PRINT_DEVELOPMENT_STATUS;
PRINT_DEVELOPMENT_STATUS_1_EX:
PRINT_DEVELOPMENT_STATUS_2_EX;
PRINT_DEVELOPMENT_STATUS_3_EX;
PRINT_DEVELOPMENT_STATUS_4_EX;
PRINT_DEVELOPMENT_STATUS_S5_EX;
PRINT_DEVELOPMENT_STATUS_6_EX:
PRINT_DEVELOPMENT_STATUS_7_EX:
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_E);

RETRIEVE_1_2D.INTERFACE_3D_MAT (REPORT_E);

end REPORT_E;

procedure REPORT_F (COUNT_TOTALS_F : in COUNT_TOTALS_TYPE) is

REPORT_F FLAG : integer:=-1;
ESTIMATED_TOTAL : DEVELOPMENT_STATUS := DEVELOPMENT_STATUS val(0);

begin
new_page (OUT_FILE_TYPE);

new_line (OUT_FILE_TYPE, 2);
put_line (OUT_FILE_TYPE, “ REPORT F);
new_line (OUT_FILE_TYPE);

-- Print_out_panel_3_settings;

PRINT_REPORT_HEADER_1;

new_line (OUT_FILE_TYPE),

put (OUT_FILE_TYPE,“ Counted: *);

put (OUT_FILE_TYPE, COUNT_TOTAL_LINES_F (COUNT_TOTALS_F));
new_line (OUT_FILE_TYPE);

put (OUT_FILE_TYPE,* Estimated: “);

put (OUT_FILE_TYPE, CNT_EST (ESTIMATED_TOTAL, COUNT_ARRAY_F));

229

new_line (OUT_FILE_TYPE);

PRINT_REPORT_HEADER_2;

PRINT_STMT_HEADER;

if RECORD_FLAGS_F.PANEL3.LINE_ 1 then
PRINT_STMT_TYPE_1_IN (COUNT_TOTALS_F, REPORT_F_FLAG);

else
PRINT_STMT_TYPE_1_EX (REPORT_F FLAG),

end if;

PRINT_STMT_TYPE_2;

if RECORD_FLAGS_F.PANEL3.LINE_ 3 then
PRINT_STMT_TYPE_3_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_3_EX (REPORT_F_FLAG);
end if;
if RECORD_FLAGS_F.PANEL3.LINE_4 then
PRINT_STMT_TYPE_4_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_4_EX (REPORT_F_FLAG);
end if;

PRINT_STMT_TYPE_S;

if RECORD_FLAGS_F.PANEL3.LINE_6 then
PRINT_STMT_TYPE_6_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_6_EX (REPORT_F_FLAG);
end if;
if RECORD_FLAGS_F.PANEL3.LINE_7 then
PRINT_STMT_TYPE_7_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_7_EX (REPORT_F_FLAG),
end if;
if RECORD_FLAGS_F.PANEL3.LINE_8 then
PRINT_STMT_TYPE_8_IN (COUNT_TOTALS_F, REPORT _F_FLAG);
else
PRINT_STMT_TYPE_8_EX (REPORT_F_FLAG);
end if;
if RECORD_FLAGS_F.PANEL3 LINE_9 then
PRINT_STMT_TYPE_9_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_9_EX (REPORT_F_FLAG);
end if;
if RECORD_FLAGS_F.PANEL3.LINE_10 then
PRINT_STMT_TYPE_10_IN (COUNT_TOTALS_F, REPORT_F_FLAG);
else
PRINT_STMT_TYPE_10_EX (REPORT_F_FLAG);
end if;

PRINT_HOW_PRODUCED;

230

if RECORD_FLAGS_F.PANEL4 LINE_1 then
PRINT_HOW_PRODUCED_1_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_1_EX;
end if;
if RECORD_FLAGS_F.PANELA.LINE_2 then
PRINT_HOW_PRODUCED_2_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_2_EX;
end if;
if RECORD_FLAGS_F.PANEL4 LINE_3 then
PRINT_HOW_PRODUCED_3_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_3_EX;
end if;
if RECORD_FLAGS_F.PANELA.LINE_4 then
PRINT_HOW_PRODUCED_4_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_4_EX;
end if;
if RECORD_FLAGS_F.PANEL4.LINE_S then
PRINT_HOW_PRODUCED_5_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_5_EX;
end if;
if RECORD_FLAGS_F.PANELA.LINE_6 then
PRINT_HOW_PRODUCED_6_IN (COUNT_TOTALS_F);
else
PRINT_HOW_PRODUCED_6_EX;
end if;

PRINT_ORGIN;

if RECORD_FLAGS_F.PANEL5.LINE_1 then
PRINT_ORGIN_1_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_1_EX;
end if;

PRINT_ORGIN_2;

if RECORD_FLAGS_F.PANEL5.LINE_3 then
PRINT_ORGIN_3_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_3_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_4 then
PRINT_ORGIN_4_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_4_EX;

231

end if:
if RECORD_FLAGS_F.PANELS.LINE_S then
PRINT_ORGIN_S5_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_S5_EX;
end if;
if RECORD_FLAGS_F.PANELSLINE_6 then
PRINT_ORGIN_6_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_6_EX;
end if;
if RECORD_FLAGS_F.PANELS5.LINE_7 then
PRINT_ORGIN_7_IN (COUNT_TOTALS_PF);
else
PRINT_ORGIN_7_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_8 then
PRINT_ORGIN_8_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_8_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_9 then
PRINT_ORGIN_9_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_9_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_10 then
PRINT_ORGIN_10_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_10_EX;
end if;
if RECORD_FLAGS_F.PANELS5.LINE_11 then
PRINT_ORGIN_11_IN (COUNT_TOTALS_F);
else
PRINT_ORGIN_11_EX;
end if;
if RECORD_FLAGS_F.PANEL5S.LINE_12 then
PRINT_ORGIN_12_IN (COUNT_TOTALS_F).
else
PRINT_ORGIN_12_EX;
end if; '
PRINT_REPORT_HEADER_2;
PRINT_USAGE;
if RECORD_FLAGS_F.PANELS.LINE_1 then
PRINT_USAGE_1_IN (COUNT_TOTALS_F);
else

PRINT_USAGE_1_EX;
end if’;

232

if RECORD_FLAGS_F.PANELG.LINE_2 then
PRINT_USAGE_2_IN (COUNT_TOTALS_F),
else
PRINT_USAGE_2_EX;
end if;

PRINT_DEVELOPMENT_STATUS;

if RECORD_FLAGS_F.PANEL9.LINE_1 then
PRINT_DEVELOPMENT_STATUS_1_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_1_EX;
end if;
if RECORD_FLAGS_F.PANEL9LINE_2 then
PRINT_DEVELOPMENT_STATUS_2_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_2_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_3 then
PRINT_DEVELOPMENT_STATUS_3_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_3_EX;
end if;
if RECORD_FLAGS_F.PANEL9.LINE_4 then
PRINT_DEVELOPMENT_STATUS_4_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_4_EX;
end if;
if RECORD_FLAGS_F.PANEL9.LINE_S then
PRINT_DEVELOPMENT_STATUS_S5_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_S_EX;
end if;
if RECORD_FLAGS_F.PANEL9.LINE_6 then
PRINT_DEVELOPMENT_STATUS_6_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_6_EX;
end if;
if RECORD_FLAGS_F.PANELY.LINE_7 then
PRINT_DEVELOPMENT _STATUS_7_EX;
else
PRINT_DEVELOPMENT_STATUS_7_EX;
end if;
if RECORD_FLAGS_F.PANELS.LINE_8 then
PRINT_DEVELOPMENT_STATUS_8_IN (COUNT_TOTALS_F);
else
PRINT_DEVELOPMENT_STATUS_8_EX;
end if;

PRINT_DATA_ARRAY_F;

233

end REPORT_F,;

-

procedure DETERMINE_WHICH_REPORT is
begin

if RECORD_FLAGS.PANEL2.REPORT_A then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_A, COUNT_TOTALS_A,
COUNT_ARRAY_A);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_A, COUNT_TOTALS_A,
COUNT_ARRAY_A);
COUNT_ATTRIBUTE_THREE (RECORD_FLAGS_A, COUNT_TOTALS_A,
COUNT_ARRAY_A);
COUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_A, COUNT_TOTALS_A,
COUNT_ARRAY_A);
COUNT_ATTRIBUTE_FIVE (RECORD_FLAGS_A, COUNT_TOTALS_A,
COUNT_ARRAY_A);
REPORT_A (COUNT_TOTALS_A);
end if;

if RECORD_FLAGS PANEL2 REPORT_ B then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_B, COUNT_TOTALS_B,
COUNT_ARRAY_B);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_B, COUNT_TOTALS_B,
COUNT_ARRAY_B);
COUNT_ATTRIBUTE_THREE (RECORD_FLAGS_B, COUNT_TOTALS_B,
COUNT_ARRAY_B);
COUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_B, COUNT_TOTALS_B,
COUNT_ARRAY_B);
COUNT_ATTRIBUTE_FIVE (RECORD_FLAGS_B, COUNT_TOTALS_B,
COUNT_ARRAY_B);
REPORT_B (COUNT_TOTALS_B);
end if;

if RECORD_FLAGS.PANEL2.REPORT _C then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_C, COUNT_TOTALS_C,
COUNT_ARRAY_C);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_C, COUNT_TOTALS_C,
COUNT_ARRAY_O);
COUNT_ATTRIBUTE_THREE (RECORD_FLLAGS_C, COUNT_TOTALS_C,
COUNT_ARRAY_C);
COUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_C, COUNT_TOTALS_C,
COUNT_ARRAY_C);
COUNT_ATTRIBUTE_FIVE (RFCORD_FLAGS_C, COUNT_TOTALS_C,
COUNT_ARRAY_C);
REPORT_C (COUNT_TOTALS_C).
end if;

234

if RECORD_FLAGS.PANEL2.REPORT_D then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_D, COUNT_TOTALS_D,
COUNT_ARRAY_D);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_D, COUNT_TOTALS_D,
COUNT_ARRAY_D);
COUNT_ATTRIBUTE_THREE (RECORD_FLAGS_D, COUNT_TOTALS_D,
COUNT_ARRAY_D);
COUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_D, COUNT_TOTALS_D,
COUNT_ARRAY_D);
COUNT_ATTRIBUTE_FIVE (RECORD_FLAGS_D, COUNT_TOTALS_D,
COUNT_ARRAY_D);
REPORT_D (COUNT_TOTALS_D);
end if;

if RECORD_FLAGS.PANEL2.REPCRT_E then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_E, COUNT_TOTALS_E,
COUNT_ARRAY_E);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_E, COUNT_TOTALS_E,
COUNT_ARRAY_E);
COUNT_ATTRIBUTE_THREE (RECORD_FLAGS_E, COUNT_TOTALS_E,
COUNT_ARRAY_E),
CQUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_E, COUNT_TOTALS_E,
COUNT_ARRAY_E);
COUNT_ATTRIBUTE_FIVE (RECORD_FLAGS_E, COUNT_TOTALS_E,
COUNT_ARRAY_E):
REPORT_E (COUNT_TOTALS_E);
end if;

if RECORD_FLAGS.PANEL2.REPORT_F then
COUNT_ATTRIBUTE_ONE (RECORD_FLAGS_F, COUNT_TOTALS_F,
COUNT_ARRAY_F);
COUNT_ATTRIBUTE_TWO (RECORD_FLAGS_F, COUNT_TOTALS_F,
COUNT_ARRAY_F);
COUNT_ATTRIBUTE_THREE (RECORD_FLAGS_F, COUNT_TOTALS_F,
COUNT_ARRAY_F);
COUNT_ATTRIBUTE_FOUR (RECORD_FLAGS_F, COUNT_TOTALS_F,
COUNT_ARRAY_F);
COUNT_ATTRIBUTE_FIVE (RECORD_FLAGS_F, COUNT_TOTALS_F,
COUNT_ARRAY_F);
REPORT_F (COUNT_TOTALS_F);
end if;

end DETERMINE_WHICH_REPORT;

end REPORT_PACKAGE;

235

GENERIC PACKAGE SPEC AND BODY

--*_Programmed

with text_io,
GLOBAL;

use text_io,
GLOBAL;

generic
type FIRST_TYPE is (<>);
type SECOND_TYPE is (<>);
type THIRD_TYPE is (<>);
type FOURTH_TYPE is (<>);
type FIFTH_TYPE is (<);
type REPORT_TYPE is (<);
type T_NUMBER_TYPE is range <>;
with function RETRIEVE (TYPE!1 : FIRST_TYPE;

TYPE2 : SECOND_TYPE:

TYPE3 : THIRD_TYPE;

TYPEA : FOURTH_TYPE;

TYPES : FIFTH_TYPE;

TYPE6 : REPORT_TYPE) return natural;
with function CHECK_TYPE_2 return T NUMBER_TYPE;
with function CHECK_TYPE_3 return T_NUMBER_TYPE;
with procedure PRINT_ROW_HEADING (ROW_NUM : positive);

package GENERIC_COUNTS is

package INTEGER_IN_OUT is new integer_io (integer);
use INTEGER_IN_OUT;

package ENUMERATION_IN_OUT is new ENUMERATION_IO (STMT_TYPE);
use ENUMERATION_IN_OUT;

procedure INTERFACE_2D_MAT (T6 : in REPORT_TYPE);

procedure INTERFACE_3D_MAT (T6 : in REPORT_TYPE);

end GENERIC_COUNTS;

236

package body GENERIC_COUNTS is

procedure HOW_PRODUCED_HEADING (IN_NUM : positive := 20) is
TEMP : natural :=IN_NUM- I;
begin

if IN_NUM > 15 then
new_line (OUT_FILE_TYPE),
put_line (OUT_FILE_TYPE, Programmed Generated Converted Copied Modified
Removed™);
new_line (OUT_FILE_TYPE, 2);
else
if TEMP = 0 then
put (OUT_FILE_TYPE, “ How produced.Programmed”);
elsif TEMP = 1 then
put (OUT_FILE_TYPE, “ How produced.Generated with source code generators™);
elsif TEMP = 2 then
put (OUT_FILE_TYPE, “ How produced.Converted with automated translators™);
elsif TEMP =3 then
put (OUT_FILE_TYPE, “ How produced.Copied or reused without change”);
elsif TEMP = 4 then
put (OUT_FILE_TYPE, * How produced.Modified”);
elsif TEMP = 5 then
put (OUT_FILE_TYPE, “ How produced.Removed™);
end if;
end if;

end HOW_PRODUCED_HEADING;

procedure STMT_TYPE_HEADING (IN_NUM : positive := 20) is
TEMP : natural :=IN_NUM- 1,
begin

if IN_NUM > 15 then
new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, “ Exec Dec Pragma Cmmts Cmmts_w_other
Banner Empty Blank”);
new_line (OUT_FILE_TYEPE, 2);
else
if TEMP = 0 then
put (OUT_FILE_TYPE, “ Statement type.Executable™);
elsif TEMF = 1 then
put (OUT_FILE_TYPE, “ Statement type.Declarations”);
elsif TEMP = 2 then
put (OUT_FILE_TYPE, “ Statement type.Compiler Directives”);
elsif TEMP = 3 then
put (OUT_FILE_TYPE, “ Statement type.Comments on their own lines”);

237

elsif TEMP =4 then
put (OUT_FILE_TYPE, Statement type.Comments on lines with source code”);
elsif TEMP = § then
put (OUT_FILE_TYPE, “ Statement type.Banners and nonblank spacers”);
elsif TEMP = 6 then
put (OUT_FILE_TYPE,* Statement type.Blank (empty) comments™);
elsif TEMP = 7 then
put (OUT_FILE_TYFE, * Statement type.Blank lines™);
end if;
end if;

end STMT_TYPE_HEADING;

procedure USAGE_HEADING (IN_NUM : positive := 20) is
TEMP : natural :=IN_NUM-1;
begin

if IN_NUM > 15 then
new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, “ Primary Extemal”);
new_line (OUT_FILE_TYPE, 2);
else
if TEMP = 0 then
put (OUT_FILE_TYPE, “ Usage.In or as part of the primary product™);
elsif TEMP = 1 then
put (OUT_FILE_TYPE, * Usage. Extemal to or in support of the primary product™);
end if;
end if;

end USAGE_HEADING;

procedure DEVELOPMENT_STATUS_HEADING (IN_NUM : positive := 20) is
TEMP : natural ;= IN_NUM- I;
begin

if IN_ NUM > 15 then
new_line (OUT_FILE_TYPE);
put_line (OUT_FILE_TYPE, * Est Designed Coded Unit test Integrated
Readiness CSCI System Tests”);
new_line (OUT_FILE_TYPE, 2);
else
if TEMP = 0 then
put (OUT_FILE_TYPE, Development Status.Estimated or planned™);
elsif TEMP = 1 then

238

put (OUT_FILE_TYPE, “
elsif TEMP = 2 then

put (OUT_FILE_TYPE, “
elsif TEMP = 3 then

put (OUT_FILE_TYPE, “
elsif TEMP = 4 then

put (OUT_FILE_TYPE, “
elsif TEMP = § then

put (OUT_FILE_TYPE, “
elsif TEMP = 6 then

put (OUT_FILE_TYPE, “
elsif TEMP = 7 then

put (OUT_FILE_TYPE,
end if;

end if;

Development Status.Designed™);

Development Status.Coded™);

Development Status.Unit tests completed™);
Development Status.Integrated into components™);
Development Status. Test readiness completed™);
Development Status.Software (CSCI) tests completed”);

Development Status.System tests completed™);

end DEVELOPMENT_STATUS_HEADING;

procedure ORGIN_HEADING (IN_NUM : positive := 20) is

TEMP : natural :=IN_NUM-1;

begin

if TEMP = O then

put (OUT_FILE_TYPE, “
elsif TEMP = 1 then

put (OUT_FILE_TYPE, ¢
elsif TEMP = 2 then

put (OUT_FILE_TYPE, “
elsif TEMP = 3 then

put (CUT_FILE_TYPE, “
elsif TEwiP = 4 then

put (OUT_FILE_TYPE, “
elsif TEMP = § then

put (OUT_FILE_TYPE, “
elsif TEMP = 6 then

put (QUT_FILE_TYPE, “
elsif TEMP = 7 then

put (OUT_FILE_TYPE,
elsif TEMP = 8 then

put (OUT_FILE TYPE, «
elsif TEMP = 9 then

put (OUT_FILE_TYPE, “
elsif TEMP = 10 then

put (OUT_FILE_TYPE, “
end if;

new_line (OUT_FILE_TYPE);

Orgin.New work™);

Orgin.Previos version™);

Orgin.COTS");

Orgin.GFS™);

Orgin.Annother product”);

Orgin.A vendor supplied language support library™);
Orgin.A vendor supplied operating system or utility”™);
Orgin.A local or modified language support library™);
Orgin.Other commercial library”);

Orgin.A reuse library”);

Orgin.Other software component or library™);

239

end ORGIN_HEADING;

;mction GEN_2D_MAT (FIX_1 : in FIRST_TYPE;
FIX_2: in SECOND_TYPE;
IN_T6 : in REPORT_TYPE) return natural is
SUM : natural :=0;
begin
for T3 in THIRD_TYPE'first .. THIRD_TYPE'last loop
for T4 in FOURTH_TYPE first .. FOURTH_TYPE'last loop
for TS in FIFTH_TYPE first .. FIFTH_TYPElast loop
SUM := SUM + RETRIEVE (FIX_1, FIX_2, T3, T4, TS, IN_T6);
end loop;
end loop;
end loop;
return SUM;
end GEN_2D_MAT;

function GEN_3D_MAT (FIX_1: in FIRST_TYPE;
FIX_2:in SECOND_TYPE;
FIX_3:in THIRD_TYPE;
IN_T6 : in REPORT_TYPE) return natural is
SUM : natural :=0;
begin
for T4 in FOURTH_TYPE first .. FOURTH_TYPE’last loop
for T5 in FIFTH_TYPE first .. FIFTH_TYPE last loop
SUM := SUM + RETRIEVE (FIX_1, FIX_2, FIX_3, T4, T5, IN_T6);

end loop;

end loop;

240

retum SUM;
end GEN_3D_MAT;

procedure INTERFACE_2D_MAT (T6 : in REPORT_TYPE) is

type MAT_TYPE is amray (FIRST_TYPE, SECOND_TYPE) of natural;
MAT : MAT_TYPE;

T2_NUMBER : T_NUMBER_TYPE;

LOOP_NUM : positive := 1;

TYPE_TWO : positive = 2;

begin

for T1 in FIRST_TYPE first .. FIRST_TYPE’last loop
for T2 in SECOND_TYPE first .. SECOND_TYPE’last loop

MAT (T1, T2) := GEN_2D_MAT (T1, T2, T6);

end loop;
end loop;

T2_NUMBER := CHECK_TYPE_2;

if T2_NUMBER = 1 then
HOW_PRODUCED_HEADING;

elsif T2_NUMBER = 2 then
STMT_TYPE_HEADING;

elsif T2_ NUMBER = 3 then
USAGE_HEADING;

elsif T2_NUMBER = 4 then
DEVELOPMENT_STATUS_HEADING;

end if;

for T1 in FIRST_TYPE 'first .. FIRST_TYPE ’last loop
PRINT_ROW_HEADING (LOOP_NUM);
for T2 in SECOND_TYPE first .. SECOND_TYPE’last loop
put (OUT_FILE_TYPE, MAT (T1, T2), width => 10);
end loop;
new_line (OUT_FILE_TYPE, 2);
LOOP_NUM := LOOP_NUM + 1;
end loop;

end INTERFACE_2D_MAT;

procedure INTERFACE_3D_MAT (T6 : in REPORT_TYPE) is

241

type MAT_TYPE is array (FIRST_TYPE, SECOND_TYPE) of natural;
MAT : MAT_TYPE;

LOOP_NUM_3 : positive := 1;

LOOP_NUM_2 : positive := 1;

T3_NUMBER : T_NUMBER_TYPE;

T2_NUMBER : T_NUMBER_TYPE;

TYPE_THREE : positive := 3;

begin

-- Need to find out the type of the third dimension
T3_NUMBER := CHECK_TYPE_3;
T2_NUMBER := CHECK_TYPE_2;

new_line (OUT_FILE_TYPE, 2);
-- need to loop through 3rd type here
for T3 in THIRD_TYPE'first .. THIRD_TYPE last loop

— Creating a two dimensional array with the same third dimesion
- staying constant
for T1 in FIRST _TYPEfirst .. FIRST_TYPE 'last loop

for T2 in SECOND_TYPE first .. SECOND_TYPE ’last loop

MAT (T1, T2) := GEN_3D_MAT (T1, T2, T3, T6);

end loop;
end loop;

- need to output the thrid dimemsion heading here

if T3_NUMBER = 1 then
HOW_PRODUCED_HEADING (LOOP_NUM_3);
elsif T3_NUMBER = 2 then
STMT_TYPE_HEADING (LOOP_NUM_3),
elsif T3_NUMBER = 3 then
null;
elsif T3_NUMBER = 4 then
DEVELOPMENT_STATUS_HEADING (LOOP_NUM_3);
elsif T3_NUMBER = § then
ORGIN_HEADING (LOOP_NUM_3);
end if;

—~ Need to output the second dimension as column headings
— Finding which type is the second dimension
if T2 NUMBER = 1 then
HOW_PRODUCED_HEADING;
elsif T2_NUMBER = 2 then
STMT_TYPE_HEADING;
elsif T2 NUMBER = 3 then
USAGE_HEADING;

elsif T2_NUMBER = 4 then
DEVELOPMENT_STATUS_HEADING;
end if;

~ Printing out the contents of the two dimensional matrix
for T1 in FIRST_TYPE first .. FIRST_TYPE'last loop
PRINT_ROW_HEADING (LOOP_NUM_2);
for T2 in SECOND_TYPE 'first .. SECOND_TYPE 'last loop
put (OUT_FILE_TYPE, MAT (T1, T2), width => 10);
end loop;
new_line (OUT_FILE_TYPE, 2);
LOOP_NUM_2 :=LOOP_NUM 2+ 1;
end loop;

LOOP_NUM_2:=1;
LOOP_NUM_3 := LOOP_NUM_3 + 1;
end loop;

end INTERFACE_3D_MAT;

end GENERIC_COUNTS;

243

APPENDIX C. EXTEND SAMPLE INPUT AND OUTPUT

Contents of File list Example

task_package.a
Extended Example Input

--TITLE : CS 4530 Class Project, Lander

-- AUTHOR : Kevin J. Walsh and Robert R. Ordonio

- DATE : 21 November 1992

- REVISED : 22 Nov, 24 Nov,

-- COURSE : CS 4530, Software Engineering with ADA

-- SYSTEM : UNIX

--COMPILER : Vads6

-- DESCRIPTION : Package contains all the tasks required for the Lander Program

— 22 Nov (1) Added code to CALCULATE task. Code was to test for the ending
- conditions, and to be able to exit the loop, and terminate

- the task when ending condition was found.

-- 24 Nov (1) Reinserted the stop entry call into input task, this will be

- called by the calculate task after the input is complete

- (2) Recoded CALCULATE task to perform calculations

-- 27 Nov (1) Integrated keytime code into this package.

with DATA_TYPES,
UTILITY_PKG,
CURRENT_EXCEPTION,
TEXT_IO,
I0CTL,
TTY,
OS_FILES;

use DATA_TYPES,
UTILITY_PKG,
TEXT_IO;

package TASK_PACKAGE is
-- Declaration of local variables used with the package
sgtyb_buf : tty.sgttyb;
old_flags : short_integer;
-- Instaniation of Enumeration IO to output ROCKET_CONTROL_INPUT variable
package " OCKET_CONTROL_INPUT_IO is new enumeration_io
(ROCF¥F __ONTROL_INPUT);
use ROCKET_CONTROL_INPUT_IO;

-- Instaniation of Enumeration 10 to output the various rocket moter

244

-- variables, rocket positions and fuel capacity.
package FUEL_IO is new float_io (FUEL);
use FUEL _IO;

-- Task will perform all calculations for the program
task CALCULATE_TASK is

entry INPUT (ROCKET_DIRECTION : in ROCKET_CONTROL_INPUT);
end CALCULATE_TASK;

-- Task will allow the user to input information to the program
task KEYREAD is

entry START;
end KEYREAD;

end TASK_PACKAGE,; -- Package specification for task_package

-- Package body for TASK_PACKAGE
package body TASK_PACKAGE is

-- Declaration of local variables used with package
CRASH_EXCEPTION,

MISS_EXCEPTION,

SKID_EXCEPTION : exception;

-- Task allows the user to input data to the program.
-- Task will verify input to ensure that input is valid

task body KEYREAD is

CHARACTER_INPUT : ROCKET_CONTROL_INPUT;
CHARACTER_IO : character;

DONE : boolean := FALSE;

TEST : natural;

begin

select

accept start;
or

terminate;
end select;

loop
-- Get information from the user
get (CHARACTER _IO);
-- Determine what the user wants to do
case CHARACTER_ IO is
when ‘0’ =>
test := 0;

245

when ‘i’ =>
test :x 1;
when ‘0’ =>
test ;= 2;
when ‘p’ =>
test ;= 3;
when ‘h’ =
test := 4;
when ‘j° =>
test := §;
when ‘k’ =>
test ;= 6;
when ‘I’ =>
test:=7;
when ‘v’ =>
test := 8;
when ‘b’ =>
test :=9;
when ‘n’ =
test := 10;
when ‘m’ =>
test:= 11;
when others =>
new_line (2);
put_line (* You have entered the wrong input. Please try again!™);
end case;
-- Convert input to rocket control input
CHARACTER_INPUT := ROCKET_CONTROL_INPUT'VAL(TEST);
CALCULATE_TASK.INPUT (CHARACTER_INPUT):

end loop;

exception
when others =>
new_line(2);
put_line(current_exception.exception_name & * raised in calculate task.”);
new_line(2);
put_line(“Exiting from the input task. *);
new_line(2);

end keyread;

-- Task will perform all calculations for the program. Task
-- will also check landing and call display procedure to
-- show status of lander information.

task body CALCULATE_TASK is

- Declaration of variables used with the task
CONTROL_ROCKET : ROCKET_CONTROL_INPUT;

246

TEST : natural;
begin
loop
select
-- Option to handle user input

accept INPUT (ROCKET_DIRECTION : in ROCKET_CONTROL _INPUT) do
CONTROL_ROCKET := ROCKET_DIRECTION;
end INPUT;
or
-- No user input therefore calculate with previous data
delay 1.0;
CONTROL _ROCKET = A;
end select;

- Conditional to determine if lander has fuel to manipulate rockets
if FUEL_LEFT > 0.0 then
-- Case statement to reset specific rocket input
case CONTROL_ROCKET is
whenU=>
POSITIVE_ROCKETS X := POSITIVE_ROCKETS.X + 1.0;
whenl=>
if POSITIVE_ROCKETS.X > 0.0 then
POSITIVE_ROCKETS.X := POSITIVE_ROCKETS X - 1.0;
end if;
when O =>
NEGATIVE_ROCKETS.X := NEGATIVE_ROCKETS X + 1.0;
when P =>
if NEGATIVE_ROCKETS.X > 0.0 then
NEGATIVE_ROCKETS.X := NEGATIVE_ROCKETS.X - 1.0;
end if;
when H=>
POSITIVE_ROCKETS.Y := POSITIVE_ROCKETS.Y + 1.0;
when J =>
if POSITIVE_ROCKETS.Y > 0.0 then
POSITIVE_ROCKETS.Y := POSITIVE_ROCKETS.Y - 1.0;
end if;
when K =>
NEGATIVE_ROCKETS.Y := NEGATIVE_ROCKETS.Y + 1.0;
whenL =>
if NEGATIVE_ROCKETS.Y > 0.0 then
NEGATIVE_ROCKETS.Y := NEGATIVE_ROCKETS.Y - 1.0;
end if;
when V=>
POSITIVE_ROCKETS.Z := POSITIVE_ROCKETS.Z + 1.0;
when B =>
if POSITIVE_ROCKETS.Z > 0.0 then
POSITIVE_ROCKETS.Z := POSITIVE_ROCKETS.Z - 1.0;
end if;

247

when N=>
NEGATIVE_ROCKETS.Z := NEGATIVE_ROCKETS.Z + 1.0;
when M =>
if NEGATIVE_ROCKETS.Z > 0.0 then
NEGATIVE_ROCKETS.Z := NEGATIVE_ROCKETS .Z - 1.0;
end if;
when OTHERS =>
null;
end case;
else
-- FUEL_LEFT = 0 therefore all engines should be at 0.0
POSITIVE_ROCKETS := (others => 0.0);
NEGATIVE_ROCKETS := (others => 0.0);
end if;

-- Calculation for new current position

CURRENT_POSITIONS.X := CURRENT_POSITIONS.X + DELTA_VECTOR.X;
CURRENT_POSITIONS.Y := CURRENT_POSITIONS.Y + DELTA_VECTOR.Y;
CURRENT_POSITIONS Z := CURRENT_POSITIONS Z + DELTA_VECTORZ;

- Calculation for new delta vector

DELTA_VECTOR.X :=POSITIVE_ROCKETS.X - NEGATIVE_ROCKETS .X;
DELTA_VECTOR.Y :=POSITIVE_ROCKETS.Y - NEGATIVE_ROCKETS.Y;
DELTA_VECTOR.Z :=POSITIVE_ROCKETS.Z - NEGATIVE_ROCKETS.Z - 9.8;

- Calculation for new fuel left value

FUEL_LEFT := FUEL_LEFT - (POSITIVE_ROCKETS X +
POSITIVE_ROCKETS.Y +
POSITIVE_ROCKETS.Z +
NEGATIVE_ROCKETS.X
NEGATIVE_ROCKETS.Y +
NEGATIVE_ROCKETS.Z);

— Procedure to display to screen position and info
DISPLAY (FUEL_LEFT, POSITIVE_ROCKETS, NEGATIVE_ROCKETS,
DELTA_VECTOR,
START_POSITIONS, CURRENT_POSITIONS, FINAL _POSITIONS);

— Test to determine if current position Z lower than final position Z
if CURRENT_POSITIONS Z <= FINAL_POSITIONS Z then

exit;
end if;

end loop; -- Main initial loop to cycle through calculation task

- EVALUATE THE LOCATION AND VELOCITY OF LANDER
if MISS_DISTANCE (CURRENT_POSITIONS.X,
FINAL_POSITIONS.X,
CURRENT_POSITIONS.Y,
FINAL_POSITIONS.Y) then
-~ LANDING IS CONSIDERED A MISS

248

T

raise MISS_EXCEPTION;

elsif SKID_DISTANCE (DELTA_VECTOR.X,
DELTA_VECTOR.Y) then
- LANDING IS CONSIDERED A SKID
raise SKID_EXCEPTION,

elsif CRASH_DISTANCE (DELTA_VECTOR.Z) then
- LANDING IS CONSIDERED A CRASH
raise CRASH_EXCEPTION;

else
-~ LANDING IS CONSIDERED A SUCCESS!!!
new_line(2);
put_line(“CONGRATULATIONS. Successful landing accomplished. *);
new_line(2);
abort KEYREAD;
end if;

exception

when MISS_EXCEPTION =>
new_line (2);
put_line (“ SORRY, BUT THE LANDING IS CONSIDERED A MISS™);
put_line (** Calculations stopped, program aborted. “);
new_line (2);
abort KEYREAD;

when SKID_EXCEPTION =>
new_line (2);
put_line (“ SORRY, BUT THE LANDING IS CONSIDERED A SKID");
put_line (“ Calculations stopped, program aborted. “);
new_line (2);
abort KEYREAD;

when CRASH_EXCEPTION =>
new_line (2);
put_line (* SORRY, BUT THE LANDING IS CONSIDERED A CRASH™);
new_line (2);
abort KEYREAD;

end CALCULATE_TASK;

end TASK_PACKAGE; -- Package body for task_package

249

m

Extended Example Output

REPORT A

Report Name: Thesis example
File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193

Estimated: 0
Total Total Individual
Includes Excludes totals

Statement type
When a line or statement contains more than

one type, classify it as the type with the

highest precedence.
1 Executables Precedence =>1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXXX 0
5 Comments
6 On their own lines 4 XXXX 0
7 On lines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0
How Produced
1 Programmed XXXX 193
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0
Orgin
1 New Work: no prior existence XXXX 193

250

2 Prior work: taken or adapted from

3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software
COTS), other than libraries XXXX 0
5 Govermnment fumnished software (GFS),
other than reuse libraries XXXX 0
6 Another product XXXX 0
7 A vendor-supplied language support
library (unmodified) XxXXX 0
8 A vedor-supplied operating system or
utility (unmodified) XXXX 0
9 A local or modified language support
library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed
for reuse) XXXX 0
12 Other software component or library XXXX
Usage
1 In or as part of the primary product ~ XXXX 193
2 Extemal to or in support of the
primary product XXXX 0
Development Status
1 Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 193

251

REPORTB

Report Name: Thesis example
File List used: example
Requested by: Kevin J. Walsh

Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0

Total Total Individual
Includes Excludes totals

Statement type
‘When a line or statement contains more than

one type, classify it as the type with the
highest precedence.

1 Executables Precedence=>1 XXXX
2 Nonexecutables
Declarations 2 XXXX 36

3
4 Compiler Directives 3 XXXX 0
5

Comments
6 On their own lines 4 XXX 0
7 On lines with source code 5 XXXX
8 Banners and nonblank spacers 6 XXXX
9 Blank (empty) comments 7 XXXX
10 Blank lines 8 XXXX 0

How Produced
1 Programmed XXXX 193

2 Generated with source code generators XXXX
3 Converted with automated translators XXXX

4 Copied or reused without change XXXX

5 Modified XXXX 0
6 Removed XXXX 0
Orgin

1 New Work: no prior existence XXXX

2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX
4 Commercial, off the shelf software

COTS), other than libraries XXXX

252

157

0

0

S Government furnished software (GFS),

other than reuse libraries XXX 0
6 Another product XXXX 0
7 A vendor-supplied language support
library (unmodified) XXXX 0
8 A vedor-supplied operating system or
utility (unmodified)).$,9.9.4 0
9 A local or modified language support
library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed
for reuse) XXXX 0
12 Other software component or library XXXX 0
Usage
1 In or as part of the primary product XXXX 193
2 Extemal to or in support of the
primary product XXXX 0
Development Status
1 Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
S Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXX 0
8 System tests completed XXXX 193

Programmed Generated Converted Copied Modified Removed
Estimated or
planned 0 0 0 0 0 0
Designed 0 0 0 0 0 0
Coded 0 0 0 0 0 0

Unit tests com-
pleted 0 0 0 0 0 0

Integrated into
components 0 0 0 0 0 0

Test readiness
review com-
pleted 0 0 0 0 0 0

Software (CSCI)

tests completed 0 0 0 0 0
System tests

completed 193 0 0 0 0

254

REPORT C

Report Name: Thesis example

File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0
Totai Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the

highest precedence.
1 Executables Precedence =>1 XXXX 157
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XXxXX 0
5 Comments
6 On their own lines 4 XXXX 47
7 Onlines with source code 5 XXXX 0
8 Banners and nonblank spacers 6 XXXX 0
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 0
How Produced
1 Programmed).0.9.0.¢ 240
2 Generated with source code generators XXXX 0
3 Converted with automated translators XXXX 0
4 Copied or reused without change XXXX 0
5 Modified XXXX 0
6 Removed XXXX 0
Orgin
1 New Work: no prior existence XXXX 240
2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX 0

4 Commercial, off the shelf software

255

h‘

COTS), other than libraries XXX 0
§ Govemment fumished software (GFS),
other than reuse libraries XXXX 0
6 Another product XXXX 0
7 A vendor-supplied language support
library (unmodified) XXX 0
8 A vedor-supplied operating system or
utility (anmodified) XXXX 0
9 A local or modified language support
library or operating system XXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed
for reuse) XXX 0
12 Other software component or library ~ XXXX 0
Usage
1 Inor as part of the primary product ~ XXXX 240
2 Extemnal 10 or in support of the
primary product XXXX 0
Development Status
1 Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
5 Integrated into components XXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 240

Programmed Generated Converted Copied Modified Removed

Executable 157 0 0 0 0 0
Declarations 36 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 47 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

256

Blank (empty)
comments

Blank lines

2517

REPORT D

Report Name: Thesis example
File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 193
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the
highest precedence.

1 Executables Precedence =>1 XXXX
2 Nonexecutables
Declarations 2 XXXX 36

Comments
On their own lines 4 XXXX 0
On lines with source code 5 XXXX
Banners and nonblank spacers 6 XXXX
Blank (empty) comments 7 XXXX

10 Blank lines 8 XXXX 0

DO~ AW

How Produced

1 Programmed XXXX 193
2 Generated with source code generators XXXX
3 Converted with automated translators ~ XXXX

4 Copied or reused without change XXXX

5 Modified XXXX 0
6 Removed XXXX 0
Orgin

1 New Work: no prior existence XXXX

2 Prior work: taken or adapted from
3 A previous version, build, or release XXXX
4 Commercial, off the shelf software

QOTS), other than libraries XXX

258

Compiler Directives 3 XXxx 0

157

0
0

5 Government fumished software (GES),

other than reyse libraries XXXX 0
6 Another product XXXX 0
T A vendor-supplied language support
library (unmodified) XXXX 0
8 A vedor-supplied operating system or
utility (unmodified) XXXX 0
9 Alocal or modified language support
library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed
for reuse) XXXX 0
12 Other software component or library XXXX 0
Usage
1 In or as part of the primary product XXXX 193
2 External to or in support of the
primary product XXXX 0
Development Status
1 Estimated or planned XXXX 0
2 Designed XXXX 0
3 Coded XXXX 0
4 Unit tests completed XXXX 0
5 Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 193

Programmed Generated Converted Copied Modified Removed
New Work: no
prior existence 193 0 0 0 0 0
A previos ver-
sion, build,
or release 0 0 0 0 0 0
COTS 0 0 0 0 0 0
GFS 0 0 0 0 0 0
Another product 0 0 0 0 0 0
A vendor suppl-

ied language
support library 0 0 0 0 0 0

259

A vendor-suppl-
ied operating
system or
utility

A local or mod-
ified language
support library
or operating
system

Other commer-

cial library

A reuse library
(software
designed for
reuse

Other software
component or

library

0

REPORTE

Report Name: Thesis example
File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 240
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

‘When a line or statement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence =>1 XXXX
2 Nonexecutables
3 Declarations 2 XXXX 36
4 Compiler Directives 3 XxXxxX

5 Comments

6 On their own lines 4 XXXX 47
7 On lines with source code 5 XXXX

8 Banners and nonblank spacers 6 XXXX
9 Blank (empty) comments 7 XXXX
10 Blank lines 8 XXXX 0
How Produced

1 Programmed XXXX 240
2 Generated with source code generators XXXX

3 Converted with automated translators XXXX

4 Copied or reused without change XXXX

5 Modified XXXX 0
6 Removed XXXX 0
Orgin

1 New Work: no prior existence XXXX

2 Prior work: taken or adapted from

3 A previous version, build, or release XXXX

4 Commercial, off the shelf software
COTS), other than libraries XXXX

261

157

5 Govermment furnished software (GFS),

other than reuse libraries XXXX 0
6 Another product XXXX 0
7 A vendor-supplied language support
library (unmodified) XXXX 0
8 A vedor-supplied operating system or
utility (unmodified) XXXX 0
9 A local or modified language support
library or operating system XXXX 0
10 Other commercial library XXXX 0
11 A reuse library (software designed
for reuse) XXxXX 0
12 Other software component or library XXXX 0
Usage
1 In or as part of the primary product ~ XXXX 240
2 External to or in support of the
primary product XXXX 0
Development Status
1 Estimz . .d or planned XXXX 0
2 Designed XXXX 0
3 Coded XXX 0
4 Unit tests completed XXXX 0
S Integrated into components XXXX 0
6 Test readiness review completed XXXX 0
7 Software (CSCI) tests completed XXXX 0
8 System tests completed XXXX 240
Orgin New work

Programmed Generated Converted Copied Modified Removed

Executable 157 0 0 0 0 0
Declarations 36 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 47 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

262

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.Previos version

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0
Compiler dir-

ectives 0 0 0 0 0 0
Comments on

their own line 0 0 0 0 0 0
Comments on

lines with

source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0
Orgin.COTS

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 1]

Comments on

263

lines with

source code 0 0 0 0 0 0

Banner and non-

blank spacers 0 0 0 0 0 0

Blank (empty)

comments 0 0 0 0 0 0

Blank lines 0 0 0 0 0 0
Orgin.GFS

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.Annother product

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on

their own line 0 0 0 0 0 0
Comments on

lines with

source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.A vendor supplied language support library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.A vendor supplied operating system or utility

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-

265

ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blarnk lines 0 0 0 0 0 0

Orgin.A local or modified language support library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.Other commercial library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0

Declarations 0 0 0 0 0 0

Compiler dir-
ectives 0 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.A reuse library

Programmed Generated Converted Copied Modified Removed

Executable 0 0 0 0 0 0
Declarations 0 0 0 0 0 0

Compiler dir-
ectives (1] 0 0 0 0 0

Comments on
their own line 0 0 0 0 0 0

Comments on
lines with
source code 0 0 0 0 0 0

Banner and non-
blank spacers 0 0 0 0 0 0

Blank (empty)
comments 0 0 0 0 0 0
Blank lines 0 0 0 0 0 0

Orgin.Other software component or library

Programmed Generated Converted Copied Modified Removed

267

Executable
Declarations

Compiler dir-
ectives

Comments on
their own line

Comments on
lines with
source code

Banner and non-
blank spacers

Blank (empty)
comments

Blank lines

0

268

REPORT F

Report Name: Thesis example
File List used: example

Requested by: Kevin J. Walsh
Measured as: Physical source lines

Delivered as: Delivered as source

Counted: 284
Estimated: 0
Total Total Individual
Includes Excludes totals
Statement type

When a line or statement contains more than
one type, classify it as the type with the

highest precedence.

1 Executables Precedence =>1 XXXX 157
2 Nonexecutables

3 Declarations 2 XXXX 36

4 Compiler Directives 3 XXXX 0

5 Comments

6 On their own lines 4 XXXX 47

7 On lines with source code 5 XXxXX 0

8 Banners and nonblank spacers 6 XXXX 5
9 Blank (empty) comments 7 XXXX 0
10 Blank lines 8 XXXX 39
How Produced

1 Programmed XXXX 284

2 Generated with source code generators XXXX
3 Converted with automated translators XXXX

4 Copied or reused without change XXXX 0
5 Modified XXXX 0

6 Removed XXXX 0
Orgin

1 New Work: no prior existence XXXX 284
2 Prior work: taken or adapted from

3 A previous version, build, or release XXXX 0
4 Commercial, off the shelf software

COTS), other than libraries XXXX 0

269

5 Govemment furnished software (GFS),

other than reuse libraries XXXX
6 Another product XXXX
7 A vendor-supplied language support

library (unmodified) XXXX
8 A vedor-supplied operating system or

utility (unmodified) XXXX
9 A local or modified language support

library or operating system XXXX
10 Other commercial library XXXX
11 A reuse library (software designed

for reuse) XXXX
12 Other software component or library XXXX

Usage

1 Inor as part of the primary product ~ XXXX
2 External to or in support of the

primary product XXXX
Development Status

o] o cc

1 Estimated or planned XXXX

2 Designed XXXX

3 Coded XXXX

4 Unit tests completed XXXX

5 Integrated into components XXXX

6 Test readiness review completed XXXX
7 Software (CSCI) tests completed XXXX

8 System tests completed XXXX

270

0

[BEI 90]

[BER 90]

[CSC 92]

[NAS 90]

[NAS 90]

[NGU 88]

[SLI87]
(SEL 90]

[SEI 93]

LIST OF REFERENCES

Beizer, Boris, Software Testing Techniques, 2d ed., pp 213-242, Van
Nostrand Reinhold, 1990.

Berzins, V., Luqi, Software Engineering with Abstractions, pp 1-21,
Addison-Wesley Publishing Company, 1990

Communications System Center/Software Department, Tinker Air Force
Base, Oklahoma, “The Source Code Line Counter Program,” T. Goff, pp. 1-
8, 17 December, 1992.

McCabe, Tom, “A Complexity Measure,” IEEE Transactions Software
Engineer, pp 308-320, December 1976.

National Aeronautics and Space Administration, Goddard Space Flight
Center, Transportable Applications Environment Plus User Interface
Developer’s Guide, v. 5.1, pp 1-265, April 1991.

Nguyen, T., Forester, K., ALEX - An Ada Lexical Analysis Generator, Version
1.0, Arcadia Environment Research Project, Department of Information and
Computer Science, University of California, Irvine, 1988.

Set Laboratories, Inc., PC-METRIC (PASCAL), pp 1-1 to 6-5, 1987.

Self, J., AFLEX - A fast lexical analyzer generator for Ada, Version 1.1,
Arcadia Environment Research Project, Department of Information and
Computer Science, University of California, Irvine, 1 September 1990.

Software Engineering Institute, Software Engineering Symposium, The
Business of Software Engineering: The Competitive Edge, The SEI
Measurements Checklist--User Experience, August 1993.

[SEI-A 92] Software Engineering Institute, Technical Report 19, Software Measurement

for DoD Systems: Recommendations for Initial Core Measures, Carleton, A.,

D., and others, pp. 1-68, September 1992.

[SEI-B 92] Software Engineering Institute, Technical Report 20, Software Size

Measurement, Park, R. E., pp. 1-167, September 1992

[SEI-C 92] Software Engineering Institute, Technical Report 21, Software Effort &

Schedule Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information, Goethert, W., B., Bailey, E., K., and Busby,
M, B., pp 1-10, September 1992.

271

[SEI-D 92] Software Engineering Institute, Technical Report 22, Software Quality

{SSD 90]

[SUN 90}

[TAB 88]

[WAR 90]

Measurement: A Framework for Counting Problems and Defects, Florac, W.
A., pp 1-20, September 1992

Software Systems Design, Inc., ADADL User’'s Manual, Release 5.0, pp 1-
130, July 1990.

Sun Microsystems, Inc, SunOS Reference Manual, Revision A of 27 March,
1990.

Taback, D., Deepak, T., AYACC - Users Manual, Version 1.0, Arcadia
Environment Research Project, Department of Information and Computer
Science, University of California, Irvine, 1988.

Warner Books Inc., Webster's New World Dictionary, pp 38, 236, August
1990.

272

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, CA 93943-5002

Dr. Timothy J. Shimeall

Computer Science Department Code CS/Sm
Naval Postgraduate School

Monterey, CA 93943-5118

MAJ] David Gaitros

Computer Science Department Code CS/Ga
Naval Postrgraduate School

Monterey, CA 93943-5118

Dr. Ted Lewis

Computer Science Department Code CS/Lt
Naval Postgraduate School

Monterey, CA 93943-5118

MAJ Kevin J. Walsh
18 Carty Ave.
Fort Monmouth, NJ 07703

Ms. Anita Carleton

Software Engineering Institute
Camegie Mellon University
Pittsburgh, PA 15213-3890

Dr. Marshall Potter
NISMC-03

Bldg. 166

Washington Navy Yard
Washington, DC 20374-5070

273

